
Apollolake implementation
Andrey Petrov
Software Engineer
Intel



Contents

➔ The Apollolake SoC
➔ New boot flow
➔ How coreboot fits in

◆ New bootblock
◆ New romstage
◆ New memory mapping
◆ New postcar stage

➔ FSP 2.0 driver
➔ How to build coreboot for Apollolake SoC
➔ Questions?



Apollolake SoC



The Apollolake SoC

● New Atom SoC, 14nm, successor of Braswell
● Can boot firmware from new media (eMMC, UFS, USB, etc)
● 1 MiB L2 cache per core and 24KiB L1 cache
● Comes with on-die SRAM (384 KiB)

○ But it is read-only for the CPU
○ Gets torn early in the boot flow

● No traditional IO-based UART
○ dw8250 chip is used
○ Only MMIO can be used

● Old PIT timer is gone



New boot flow



New boot flow (1/2) Key boot components

1. PMC
a. 32b ARC controller, 64kB local instruction memory, 16kB local data memory, local 

ROM
b. First microcontroller active after reset 
c. Always On (during runtime)

2. CSE: Converged Security Engine
a. 32b uiA controller, 384kB local SRAM, 32k combined cache, local ROM
b. Responsible for retrieving and validating all firmware
c. 4 different CSE firmware loads

■ ROM: responsible for retrieving and validating CSE bring up FW from NVM
■ RBE: ROM boot extensions
■ ukernel/Bring up: responsible for initializing all other pieces of the system 

and retrieving and validating all other pre-OS FW
■ Runtime: ukernel+run time applications

Can share SRAM with host CPU, control IMR (isolated memory ranges), etc
3. Host CPUs
4. Storage controllers



SRAM
1. CSE sets up SRAM

CSE 3.0

2. Copies IBBL and 
assets into shared 
SRAM

Boot media
IBBL

uCode
FIT

3. Maps portion of SRAM 
into CPU address space

4. CPU is out reset. 
uCode is loaded, and 
IBBL is executed from 
reset vector 

0

4GiB

5. IBBL sets up CAR, 
relocates to CAR, and 
initiates firmware 
transfer into SRAM

CAR

6. CSE copies MRC into 
SRAM and IBBL copies 
it into CAR

8. Once memory is 
trained, CSE copies rest 
of firmware into DRAM

9. Rest as usual

7. MRC is run in CAR

New boot flow (2/2)



How does coreboot fit in?



Quick summary

● Bootblock acts as IBBL

● We do not relocate bootblock to CAR, we just load romstage into it

● We do not use CSE to transfer from boot media

○ Memory mapped SPI is used instead

● romstage is run in CAR

● FSP-M (MemoryInit) runs in CAR

● FSP-S (SiliconInit) runs in ramstage

● Note we do not rely on memory mapping and each stage/component 

is “loaded”, so other media driver can be added



New x86 bootblock

● Bootblock sets up cache-as-ram by itself
● Provides “C” environment early on
● Can link with any other code
● Linked as all other stages 
● Shares CAR memory layout with 

other CAR stages
○ Pre-mem variables (e.g timestamps) 

can be preserved 

● Monolithic flow
● Mix of assembly code and C code 

compiled with romcc
● Assumes fixed memory mapping
● Limited functionality: parse cbfs, 

jump

New bootblockOld bootblock



How coreboot fits in - bootblock

BOOTBLOCK (executed in SRAM)

1.1. Entry point is in common code bootblock assembly src/arch/x86/bootblock_crt0.S

■ Protected mode switch, GDT, etc are provided by common x86 code

1.2. Jump into SoC-provided bootblock_pre_c_entry, implemented in src/soc/intel/apollolake/cache_as_ram.S

■ sets up cache-as-ram and early MTRRs

■ Non-evict mode (NEM) is activated

■ Stack pointer is set to CAR region

■ Jumps into src/soc/intel/apollolake/bootblock.c bootblock_c_entry()

1.3. Sets up essentials then jumps into main() in src/lib/bootblock.c

1.4. Library bootblock main runs callbacks:

■ console_init()

■ bootblock_soc_early_init()

■ bootblock_mainboard_early_init() in order to disable watchdog, set up BARs, configure GPIOs, etc

1.5. Finally run_romstage()

1.6. run_romstage() loads and starts romstage



New romstage

Unlike other x86 SoCs, runs in CAR

● Entry point is car_stage_entry()
○ “carstage” infrastructure is shared for “car” stages like verstage and romstage
○ FSP driver loads FSP-M blob in CAR
○ fsp_memory_init()
○ Once memory is trained cache needs to be enabled

● So, memory is trained, how do you tear down CAR?
○ We want to enable L2 cache as early as possible
○ .. but you can’t tear down car while running in it
○ ramstage can be uncompressed and loaded into uncached memory
○ .. but it will be slow

● Load new stage postcar that is dedicated to tear down



New postcar stage

● Small (~20kb) new generic stage

● Runs in DRAM (cached or uncached)

● SoC provides a callback to flush caches and tear down CAR

● Sets up MTRRs to ensure ramstage is cached

● Loads and runs ramstage



CQOS instead of NEM

● Traditionally CAR is implemented by setting MTRRs and turning on No 
Evict Mode (NEM)

○ In NEM mode, data written stay in cache and is not evicted
○ However, rest of cache can not be used because all cache fills are blocked
○ In NEM, L1 cache is still usable

● How L2 can be still used for storing data/code and cache? 
● With CQOS

■ Originally meant to be used by OS to prevent low-priority tasks cause cache evictions
■ Cache ways can be locked to prevent fills
■ Rest of cache behaves normally
■ This way we can use CAR and take advantage of L2 cache
■ Currently WIP, patches pending upload



New memory mapping

● Since eMMC and SPI needed to have unified layout, 
boot media layout has been changed

● Intel firmware descriptor:
○ ME region is not used
○ BIOS and ME are fused together
○ TXE gets its own region for data storage

● Memory mapping
○ Unlike previous SoC, not entire flash is memory mapped
○ Only BIOS region is mapped under 4gb
○ Size of “BIOS” region in descriptor affects addressing

soc/intel/apollolake/mmap_boot.c
mainboard/xxx/Kconfig, IFD_BIOS_START, IFD_BIOS_END

descriptor

BIOS

TXE data

4GiB

blobs

0
IBBL



FSP 2.0 driver



FSP 2.0 driver

FSP 2.0

● Since different components are ran in different non-contiguous addresses, 
monolithic blob does not work

● 3 blobs instead of one
○ FSP-T, to set up CAR, not used
○ FSP-M, MemoryInit
○ FSP-S, SiliconInit

● Blobs can be run XIP or from cache-as-ram
● Driver provides coreboot<->FSP interface
● Driver offers callbacks for SoC to implement: before memory init, before 

silicon init



How to build Apollolake



How can you build Apollolake coreboot

1. Make sure your board is hard strapped for “SPI Boot Source”
2. make nconfig, select mainboard, ex google/reef
3. add this to your .config:

CONFIG_NEED_IFWI=y
CONFIG_IFWI_FMAP_NAME="IFWI"
CONFIG_IFWI_FILE_NAME="3rdparty/blobs/mainboard/google/reef/fitimage.bin"

4. Prepare fitimage.bin
○ Make sure you disable bootguard by editing the XMLs or fit.exe GUI.
○ Use fit.exe to generate "fitimage.bin". 
○ This is a fully flashable image will act as a template to generate coreboot.rom

5. dd first 4k of fitimage.bin to produce descriptor.bin
6. Run ifdtool -d fitimage.bin to see the size of BIOS region
7. Update IFD_BIOS_START and IFD_BIOS_END to match ifdtool output
8. Drop fitimage.bin and descriptor.bin 3rdparty/blobs/mainboard/google/reef/fitimage.bin
9. make

10. flash build/coreboot.rom



Questions?


