Coreboot Options: Difference between revisions

From coreboot
Jump to navigation Jump to search
(Updated)
No edit summary
 
Line 1: Line 1:
This is an automatically generated list of '''coreboot compile-time options''' (using coreboot/util/optionlist utility).
{{#externalredirect: https://coreboot.org/status/kconfig-options.html }}
 
Last update: 2013/01/12 17:40:48. (runknown)
{| border="0" style="font-size: smaller"
|- bgcolor="#6699dd"
! align="left" | Option
! align="left" | Source
! align="left" | Format
! align="left" | Short Description
! align="left" | Description
|- bgcolor="#6699dd"
! align="left" | Menu: General setup || || || ||
|- bgcolor="#eeeeee"
| EXPERT || toplevel || bool || Expert mode ||
This allows you to select certain advanced configuration options.
 
Warning: Only enable this option if you really know what you are
doing! You have been warned!
 
||
|- bgcolor="#eeeeee"
| LOCALVERSION || toplevel || string || Local version string ||
Append an extra string to the end of the coreboot version.
 
This can be useful if, for instance, you want to append the
respective board's hostname or some other identifying string to
the coreboot version number, so that you can easily distinguish
boot logs of different boards from each other.
 
||
|- bgcolor="#eeeeee"
| CBFS_PREFIX || toplevel || string || CBFS prefix to use ||
Select the prefix to all files put into the image. It's "fallback"
by default, "normal" is a common alternative.
 
||
|- bgcolor="#eeeeee"
| CBFS_PREFIX || toplevel || string || Compiler to use ||
This option allows you to select the compiler used for building
coreboot.
 
||
|- bgcolor="#eeeeee"
| COMPILER_GCC || toplevel || bool || GCC ||
Use the GNU Compiler Collection (GCC) to build coreboot.
 
For details see http://gcc.gnu.org.
 
||
|- bgcolor="#eeeeee"
| COMPILER_LLVM_CLANG || toplevel || bool || LLVM/clang ||
Use LLVM/clang to build coreboot.
 
For details see http://clang.llvm.org.
 
||
|- bgcolor="#eeeeee"
| SCANBUILD_ENABLE || toplevel || bool || Build with scan-build for static code analysis ||
Changes the build process to use scan-build (a utility for
running the clang static code analyzer from the command line).
 
Requires the scan-build utility in your system $PATH.
 
For details see http://clang-analyzer.llvm.org/scan-build.html.
 
||
|- bgcolor="#eeeeee"
| SCANBUILD_REPORT_LOCATION || toplevel || string || Directory for the scan-build report(s) ||
Directory where the scan-build reports should be stored in. The
reports are stored in subdirectories of the form 'yyyy-mm-dd-*'
in the specified directory.
 
If this setting is left empty, the coreboot top-level directory
will be used to store the report subdirectories.
 
||
|- bgcolor="#eeeeee"
| CCACHE || toplevel || bool || Use ccache to speed up (re)compilation ||
Enables the use of ccache for faster builds.
 
Requires the ccache utility in your system $PATH.
 
For details see https://ccache.samba.org.
 
||
|- bgcolor="#eeeeee"
| SCONFIG_GENPARSER || toplevel || bool || Generate SCONFIG parser using flex and bison ||
Enable this option if you are working on the sconfig device tree
parser and made changes to sconfig.l and sconfig.y.
 
Otherwise, say N.
 
||
|- bgcolor="#eeeeee"
| USE_OPTION_TABLE || toplevel || bool || Use CMOS for configuration values ||
Enable this option if coreboot shall read options from the "CMOS"
NVRAM instead of using hard-coded values.
 
||
|- bgcolor="#eeeeee"
| COMPRESS_RAMSTAGE || toplevel || bool || Compress ramstage with LZMA ||
Compress ramstage to save memory in the flash image. Note
that decompression might slow down booting if the boot flash
is connected through a slow link (i.e. SPI).
 
||
|- bgcolor="#eeeeee"
| INCLUDE_CONFIG_FILE || toplevel || bool || Include the coreboot .config file into the ROM image ||
Include the .config file that was used to compile coreboot
in the (CBFS) ROM image. This is useful if you want to know which
options were used to build a specific coreboot.rom image.
 
Saying Y here will increase the image size by 2-3kB.
 
You can use the following command to easily list the options:
 
grep -a CONFIG_ coreboot.rom
 
Alternatively, you can also use cbfstool to print the image
contents (including the raw 'config' item we're looking for).
 
Example:
 
$ cbfstool coreboot.rom print
coreboot.rom: 4096 kB, bootblocksize 1008, romsize 4194304,
offset 0x0
Alignment: 64 bytes
 
Name                          Offset    Type        Size
cmos_layout.bin                0x0        cmos layout  1159
fallback/romstage              0x4c0      stage        339756
fallback/coreboot_ram          0x53440    stage        186664
fallback/payload              0x80dc0    payload      51526
config                        0x8d740    raw          3324
(empty)                        0x8e480    null        3610440
 
||
|- bgcolor="#eeeeee"
| EARLY_CBMEM_INIT || toplevel || bool || Initialize CBMEM while in ROM stage ||
Make coreboot initialize the cbmem structures while running in ROM
stage. This could be useful when the ROM stage wants to communicate
some, for instance, execution timestamps.
 
||
|- bgcolor="#eeeeee"
| COLLECT_TIMESTAMPS || toplevel || bool || Create a table of timestamps collected during boot ||
Make coreboot create a table of timer-ID/timer-value pairs to
allow measuring time spent at different phases of the boot process.
 
||
|- bgcolor="#eeeeee"
| USE_BLOBS || toplevel || bool || Allow use of binary-only repository ||
This draws in the blobs repository, which contains binary files that
might be required for some chipsets or boards.
This flag ensures that a "Free" option remains available for users.
 
||
|- bgcolor="#eeeeee"
| REQUIRES_BLOB || toplevel || bool ||  ||
This option can be configured by boards that require the blobs
repository for the default configuration. It will make the build
fail if USE_BLOBS is disabled. Users that still desire to do a
coreboot build for such a board can override this manually, but
this option serves as warning that it might fail.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Mainboard || || || ||
|- bgcolor="#eeeeee"
| SPL_TEXT_BASE || mainboard/google/snow || hex ||  ||
Location of SPL. Default location is within iRAM region.
 
||
|- bgcolor="#eeeeee"
| SPL_MAX_SIZE || mainboard/google/snow || hex ||  ||
Max size of SPL. Let's say 32KB for now...
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_UART0 || mainboard/google/snow || bool || UART0 ||
Serial console on UART0
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_UART1 || mainboard/google/snow || bool || UART1 ||
Serial console on UART1
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_UART2 || mainboard/google/snow || bool || UART2 ||
Serial console on UART2
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_UART3 || mainboard/google/snow || bool || UART3 ||
Serial console on UART3
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_UART_ADDRESS || mainboard/google/snow || hex ||  ||
Map the UART names to the respective MMIO address.
 
||
|- bgcolor="#eeeeee"
| BOARD_LENOVO_X60 || mainboard/lenovo || bool || ThinkPad X60 / X60s ||
The following X60 series ThinkPad machines have been verified to
work correctly:
 
ThinkPad X60s (Model 1702, 1703)
ThinkPad X60  (Model 1709)
 
||
|- bgcolor="#eeeeee"
| BOARD_LENOVO_T60 || mainboard/lenovo || bool || ThinkPad T60 / T60p ||
The following T60 series ThinkPad machines have been verified to
work correctly:
 
Thinkpad T60p (Model 2007)
 
||
|- bgcolor="#eeeeee"
| BOARD_OLD_REVISION || mainboard/lippert/hurricane-lx || bool || Board is old pre-3.0 revision ||
Look on the bottom side for a number like 406-0001-30.  The last 2
digits state the PCB revision (3.0 in this example).  For 2.0 or older
boards choose Y, for 3.0 and newer say N.
 
Old revision boards need a jumper shorting the power button to
power on automatically.  You may enable the button only after this
jumper has been removed.  New revision boards are not restricted
in this way, and always have the power button enabled.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_UARTS_RS485 || mainboard/lippert/hurricane-lx || bool || Switch on-board serial ports to RS485 ||
If selected, both on-board serial ports will operate in RS485 mode
instead of RS232.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_UARTS_RS485 || mainboard/lippert/literunner-lx || bool || Switch on-board serial ports 1 & 2 to RS485 ||
If selected, the first two on-board serial ports will operate in RS485
mode instead of RS232.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_IDE_SLAVE || mainboard/lippert/literunner-lx || bool || Make on-board CF socket act as Slave ||
If selected, the on-board Compact Flash card socket will act as IDE
Slave instead of Master.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_UARTS_RS485 || mainboard/lippert/roadrunner-lx || bool || Switch on-board serial ports to RS485 ||
If selected, both on-board serial ports will operate in RS485 mode
instead of RS232.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_UARTS_RS485 || mainboard/lippert/spacerunner-lx || bool || Switch on-board serial ports to RS485 ||
If selected, both on-board serial ports will operate in RS485 mode
instead of RS232.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_IDE_SLAVE || mainboard/lippert/spacerunner-lx || bool || Make on-board SSD act as Slave ||
If selected, the on-board SSD will act as IDE Slave instead of Master.
 
||
|- bgcolor="#eeeeee"
| SIO_PORT || mainboard/supermicro/h8scm || hex ||  ||
though UARTs are on the NUVOTON BMC, port 0x164E
PS2 keyboard and mouse are on SUPERIO_WINBOND_W83627DHG, port 0x2E
 
||
|- bgcolor="#eeeeee"
| SIO_PORT || mainboard/supermicro/h8qgi || hex ||  ||
though UARTs are on the NUVOTON BMC, port 0x164E
PS2 keyboard and mouse are on SUPERIO_WINBOND_W83627DHG, port 0x2E
 
||
|- bgcolor="#eeeeee"
| SIO_PORT || mainboard/tyan/s8226 || hex ||  ||
though UARTs are on the NUVOTON BMC, port 0x164E
PS2 keyboard and mouse are on SUPERIO_WINBOND_W83627DHG, port 0x2E
 
||
|- bgcolor="#eeeeee"
| BOARD_ROMSIZE_KB_16384 || mainboard || bool || ROM chip size ||
Select the size of the ROM chip you intend to flash coreboot on.
 
The build system will take care of creating a coreboot.rom file
of the matching size.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_64 || mainboard || bool || 64 KB ||
Choose this option if you have a 64 KB ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_128 || mainboard || bool || 128 KB ||
Choose this option if you have a 128 KB ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_256 || mainboard || bool || 256 KB ||
Choose this option if you have a 256 KB ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_512 || mainboard || bool || 512 KB ||
Choose this option if you have a 512 KB ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_1024 || mainboard || bool || 1024 KB (1 MB) ||
Choose this option if you have a 1024 KB (1 MB) ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_2048 || mainboard || bool || 2048 KB (2 MB) ||
Choose this option if you have a 2048 KB (2 MB) ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_4096 || mainboard || bool || 4096 KB (4 MB) ||
Choose this option if you have a 4096 KB (4 MB) ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_8192 || mainboard || bool || 8192 KB (8 MB) ||
Choose this option if you have a 8192 KB (8 MB) ROM chip.
 
||
|- bgcolor="#eeeeee"
| COREBOOT_ROMSIZE_KB_16384 || mainboard || bool || 16384 KB (16 MB) ||
Choose this option if you have a 16384 KB (16 MB) ROM chip.
 
||
|- bgcolor="#eeeeee"
| ENABLE_POWER_BUTTON || mainboard || bool || Enable the power button ||
The selected mainboard can optionally have the power button tied
to ground with a jumper so that the button appears to be
constantly depressed. If this option is enabled and the jumper is
installed then the board will turn on, but turn off again after a
short timeout, usually 4 seconds.
 
Select Y here if you have removed the jumper and want to use an
actual power button. Select N if you have the jumper installed.
 
||
|- bgcolor="#eeeeee"
| MAINBOARD_SERIAL_NUMBER || mainboard || string || Serial number ||
Define the used serial number which will be used by SMBIOS tables.
 
||
|- bgcolor="#eeeeee"
| MAINBOARD_VERSION || mainboard || string || Version number ||
Define the used version number which will be used by SMBIOS tables.
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Architecture (x86) || || || ||
|- bgcolor="#eeeeee"
| UPDATE_IMAGE || arch/x86 || bool || Update existing coreboot.rom image ||
If this option is enabled, no new coreboot.rom file
is created. Instead it is expected that there already
is a suitable file for further processing.
The bootblock will not be modified.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Architecture (armv7) || || || ||
|- bgcolor="#eeeeee"
| UPDATE_IMAGE || arch/armv7 || bool || Update existing coreboot.rom image ||
If this option is enabled, no new coreboot.rom file
is created. Instead it is expected that there already
is a suitable file for further processing.
The bootblock will not be modified.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Chipset || || || ||
|- bgcolor="#eeeeee"
| || || (comment) || || CPU ||
|- bgcolor="#eeeeee"
| SKIP_LOWLEVEL_INIT || cpu/samsung || bool || Skip low-level init ||
Certain functions (ie PLL init) and processor features may already be
handled by masked ROM code.
 
||
|- bgcolor="#eeeeee"
| BOOTBLOCK_OFFSET || cpu/samsung/exynos5250 || hex || Bootblock offset ||
This is where the Coreboot bootblock resides. For Exynos5250,
this value is pre-determined by the vendor-provided BL1.
 
||
|- bgcolor="#eeeeee"
| UPDATE_CPU_MICROCODE || cpu/amd/model_10xxx || bool || Update CPU microcode ||
Select this to apply patches to the CPU microcode provided by
AMD without source, and distributed with coreboot, to address
issues in the CPU post production.
 
Microcode updates distributed with coreboot are not necessarily
the latest version available from AMD. Updates are only applied
if they are newer than the microcode already in your CPU.
 
Unselect this to let Fam10h CPUs run with microcode as shipped
from factory. No binary microcode patches will be included in the
coreboot image in that case, which can help with creating an image
for which complete source code is available, which in turn might
simplify license compliance.
 
Microcode updates intend to solve issues that have been discovered
after CPU production. The common case is that systems work as
intended with updated microcode, but we have also seen cases where
issues were solved by not applying the microcode updates.
 
Note that some operating system include these same microcode
patches, so you may need to also disable microcode updates in
your operating system in order for this option to matter.
 
||
|- bgcolor="#eeeeee"
| GEODE_VSA_FILE || cpu/amd/geode_gx2 || bool || Add a VSA image ||
Select this option if you have an AMD Geode GX2 vsa that you would
like to add to your ROM.
 
You will be able to specify the location and file name of the
image later.
 
||
|- bgcolor="#eeeeee"
| VSA_FILENAME || cpu/amd/geode_gx2 || string || AMD Geode GX2 VSA path and filename ||
The path and filename of the file to use as VSA.
 
||
|- bgcolor="#eeeeee"
| GEODE_VSA_FILE || cpu/amd/geode_lx || bool || Add a VSA image ||
Select this option if you have an AMD Geode LX vsa that you would
like to add to your ROM.
 
You will be able to specify the location and file name of the
image later.
 
||
|- bgcolor="#eeeeee"
| VSA_FILENAME || cpu/amd/geode_lx || string || AMD Geode LX VSA path and filename ||
The path and filename of the file to use as VSA.
 
||
|- bgcolor="#eeeeee"
| XIP_ROM_SIZE || cpu/amd/agesa || hex ||  ||
Overwride the default write through caching size as 1M Bytes.
On some AMD paltform, one socket support 2 or more kinds of
processor family, compiling several cpu families agesa code
will increase the romstage size.
In order to execute romstage in place on the flash rom,
more space is required to be set as write through caching.
 
||
|- bgcolor="#eeeeee"
| REDIRECT_IDS_HDT_CONSOLE_TO_SERIAL || cpu/amd/agesa/family10 || bool || Redirect AGESA IDS_HDT_CONSOLE to serial console ||
This Option allows you to redirect the AMD AGESA IDS_HDT_CONSOLE debug information to the serial console.
 
Warning: Only enable this option when debuging or tracing AMD AGESA code.
 
||
|- bgcolor="#eeeeee"
| CPU_AMD_SOCKET_G34 || cpu/amd/agesa/family15 || bool ||  ||
AMD G34 Socket
 
||
|- bgcolor="#eeeeee"
| CPU_AMD_SOCKET_C32 || cpu/amd/agesa/family15 || bool ||  ||
AMD C32 Socket
 
||
|- bgcolor="#eeeeee"
| CPU_AMD_SOCKET_AM3R2 || cpu/amd/agesa/family15 || bool ||  ||
AMD AM3r2 Socket
 
||
|- bgcolor="#eeeeee"
| REDIRECT_IDS_HDT_CONSOLE_TO_SERIAL || cpu/amd/agesa/family15 || bool || Redirect AGESA IDS_HDT_CONSOLE to serial console ||
This Option allows you to redirect the AMD AGESA IDS_HDT_CONSOLE debug information to the serial console.
 
Warning: Only enable this option when debuging or tracing AMD AGESA code.
 
||
|- bgcolor="#eeeeee"
| TSC_SYNC_LFENCE || cpu/x86 || bool ||  ||
The CPU driver should select this if the CPU needs
to execute an lfence instruction in order to synchronize
rdtsc. This is true for all modern AMD CPUs.
 
||
|- bgcolor="#eeeeee"
| TSC_SYNC_MFENCE || cpu/x86 || bool ||  ||
The CPU driver should select this if the CPU needs
to execute an mfence instruction in order to synchronize
rdtsc. This is true for all modern Intel CPUs.
 
||
|- bgcolor="#eeeeee"
| SMP || cpu || bool ||  ||
This option is used to enable certain functions to make coreboot
work correctly on symmetric multi processor (SMP) systems.
 
||
|- bgcolor="#eeeeee"
| AP_SIPI_VECTOR || cpu || hex ||  ||
This must equal address of ap_sipi_vector from bootblock build.
 
||
|- bgcolor="#eeeeee"
| MMX || cpu || bool ||  ||
Select MMX in your socket or model Kconfig if your CPU has MMX
streaming SIMD instructions. ROMCC can build more efficient
code if it can spill to MMX registers.
 
||
|- bgcolor="#eeeeee"
| SSE || cpu || bool ||  ||
Select SSE in your socket or model Kconfig if your CPU has SSE
streaming SIMD instructions. ROMCC can build more efficient
code if it can spill to SSE (aka XMM) registers.
 
||
|- bgcolor="#eeeeee"
| SSE2 || cpu || bool ||  ||
Select SSE2 in your socket or model Kconfig if your CPU has SSE2
streaming SIMD instructions. Some parts of coreboot can be built
with more efficient code if SSE2 instructions are available.
 
||
|- bgcolor="#eeeeee"
| CPU_MICROCODE_CBFS_GENERATE || cpu || bool || Generate from tree ||
Select this option if you want microcode updates to be assembled when
building coreboot and included in the final image as a separate CBFS
file. Microcode will not be hard-coded into ramstage.
 
The microcode file and may be removed from the ROM image at a later
time with cbfstool, if desired.
 
If unsure, select this option.
 
||
|- bgcolor="#eeeeee"
| CPU_MICROCODE_CBFS_EXTERNAL || cpu || bool || Include external microcode file ||
Select this option if you want to include an external file containing
the CPU microcode. This will be included as a separate file in CBFS.
A word of caution: only select this option if you are sure the
microcode that you have is newer than the microcode shipping with
coreboot.
 
The microcode file and may be removed from the ROM image at a later
time with cbfstool, if desired.
 
If unsure, select "Generate from tree"
 
||
|- bgcolor="#eeeeee"
| CPU_MICROCODE_FILE || cpu || string || Path and filename of CPU microcode ||
The path and filename of the file containing the CPU microcode.
 
||
|- bgcolor="#eeeeee"
| CPU_MICROCODE_CBFS_NONE || cpu || bool || Do not include microcode updates ||
Select this option if you do not want CPU microcode included in CBFS.
Note that for some CPUs, the microcode is hard-coded into the source
tree and is not loaded from CBFS. In this case, microcode will still
be updated. There is a push to move all microcode to CBFS, but this
change is not implemented for all CPUs.
 
This option currently applies to:
- Intel SandyBridge/IvyBridge
- VIA Nano
 
Microcode may be added to the ROM image at a later time with cbfstool,
if desired.
 
If unsure, select "Generate from tree"
 
The GOOD:
Microcode updates intend to solve issues that have been discovered
after CPU production. The expected effect is that systems work as
intended with the updated microcode, but we have also seen cases where
issues were solved by not applying microcode updates.
 
The BAD:
Note that some operating system include these same microcode patches,
so you may need to also disable microcode updates in your operating
system for this option to have an effect.
 
The UGLY:
A word of CAUTION: some CPUs depend on microcode updates to function
correctly. Not updating the microcode may leave the CPU operating at
less than optimal performance, or may cause outright hangups.
There are CPUs where coreboot cannot properly initialize the CPU
without microcode updates
For example, if running with the factory microcode, some Intel
SandyBridge CPUs may hang when enabling CAR, or some VIA Nano CPUs
will hang when changing the frequency.
 
Make sure you have a way of flashing the ROM externally before
selecting this option.
 
||
|- bgcolor="#eeeeee"
| || || (comment) || || Northbridge ||
|- bgcolor="#eeeeee"
| SVI_HIGH_FREQ || northbridge/amd/amdfam10 || bool ||  ||
Select this for boards with a Voltage Regulator able to operate
at 3.4 MHz in SVI mode. Ignored unless the AMD CPU is rev C3.
 
||
|- bgcolor="#eeeeee"
| REDIRECT_NBCIMX_TRACE_TO_SERIAL || northbridge/amd/cimx/rd890 || bool || Redirect AMD Northbridge CIMX Trace to serial console ||
This Option allows you to redirect the AMD Northbridge CIMX
Trace debug information to the serial console.
 
Warning: Only enable this option when debuging or tracing AMD CIMX code.
 
||
 
||
||
|- bgcolor="#6699dd"
! align="left" | Menu: HyperTransport setup || || || ||
|- bgcolor="#eeeeee"
| None || northbridge/amd || None || HyperTransport frequency ||
This option sets the maximum permissible HyperTransport link
frequency.
 
Use of this option will only limit the autodetected HT frequency.
It will not (and cannot) increase the frequency beyond the
autodetected limits.
 
This is primarily used to work around poorly designed or laid out
HT traces on certain motherboards.
 
||
|- bgcolor="#eeeeee"
| LIMIT_HT_SPEED_AUTO || northbridge/amd || bool || HyperTransport downlink width ||
This option sets the maximum permissible HyperTransport
downlink width.
 
Use of this option will only limit the autodetected HT width.
It will not (and cannot) increase the width beyond the autodetected
limits.
 
This is primarily used to work around poorly designed or laid out HT
traces on certain motherboards.
 
||
|- bgcolor="#eeeeee"
| LIMIT_HT_DOWN_WIDTH_16 || northbridge/amd || bool || HyperTransport uplink width ||
This option sets the maximum permissible HyperTransport
uplink width.
 
Use of this option will only limit the autodetected HT width.
It will not (and cannot) increase the width beyond the autodetected
limits.
 
This is primarily used to work around poorly designed or laid out HT
traces on certain motherboards.
 
||
 
|- bgcolor="#eeeeee"
| SDRAMPWR_4DIMM || northbridge/intel/i440bx || bool ||  ||
This option affects how the SDRAMC register is programmed.
Memory clock signals will not be routed properly if this option
is set wrong.
 
If your board has 4 DIMM slots, you must use select this option, in
your Kconfig file of the board. On boards with 3 DIMM slots,
do _not_ select this option.
 
 
||
||
|- bgcolor="#eeeeee"
| OVERRIDE_CLOCK_DISABLE || northbridge/intel/i945 || bool ||  ||
Usually system firmware turns off system memory clock
signals to unused SO-DIMM slots to reduce EMI and power
consumption.
However, some boards do not like unused clock signals to
be disabled.
 
||
|- bgcolor="#eeeeee"
| MAXIMUM_SUPPORTED_FREQUENCY || northbridge/intel/i945 || int ||  ||
If non-zero, this designates the maximum DDR frequency
the board supports, despite what the chipset should be
capable of.
 
||
|- bgcolor="#eeeeee"
| CHECK_SLFRCS_ON_RESUME || northbridge/intel/i945 || int ||  ||
On some boards it may be neccessary to hard reset early
during resume from S3 if the SLFRCS register indicates that
a memory channel is not guaranteed to be in self-refresh.
On other boards the check always creates a false positive,
effectively making it impossible to resume.
 
||
|- bgcolor="#eeeeee"
| HAVE_MRC || northbridge/intel/sandybridge || bool || Add a System Agent binary ||
Select this option to add a System Agent binary to
the resulting coreboot image.
 
Note: Without this binary coreboot will not work
 
||
|- bgcolor="#eeeeee"
| MRC_FILE || northbridge/intel/sandybridge || string || Intel System Agent path and filename ||
The path and filename of the file to use as System Agent
binary.
 
||
|- bgcolor="#eeeeee"
| CBFS_SIZE || northbridge/intel/sandybridge || hex || Size of CBFS filesystem in ROM ||
On Sandybridge and Ivybridge systems the firmware image has to
store a lot more than just coreboot, including:
- a firmware descriptor
- Intel Management Engine firmware
- MRC cache information
This option allows to limit the size of the CBFS portion in the
firmware image.
 
||
|- bgcolor="#eeeeee"
| || || (comment) || || Southbridge ||
|- bgcolor="#6699dd"
! align="left" | Menu: AMD Geode GX1 video support || || || ||
 
|- bgcolor="#eeeeee"
| EXT_CONF_SUPPORT || southbridge/amd/rs690 || bool ||  ||
Select if RS690 should be setup to support MMCONF.
 
||
|- bgcolor="#eeeeee"
| USBDEBUG_DEFAULT_PORT || southbridge/amd/sb600 || int || SATA Mode ||
Select the mode in which SATA should be driven. IDE or AHCI.
The default is IDE.
 
config SATA_MODE_IDE
bool "IDE"
 
config SATA_MODE_AHCI
bool "AHCI"
||
|- bgcolor="#eeeeee"
| SATA_CONTROLLER_MODE || southbridge/amd/cimx/sb700 || hex ||  ||
0x0 = Native IDE mode.
0x1 = RAID mode.
0x2 = AHCI mode.
0x3 = Legacy IDE mode.
0x4 = IDE->AHCI mode.
0x5 = AHCI mode as 7804 ID (AMD driver).
0x6 = IDE->AHCI mode as 7804 ID (AMD driver).
 
||
|- bgcolor="#eeeeee"
| PCIB_ENABLE || southbridge/amd/cimx/sb700 || bool ||  ||
n = Disable PCI Bridge Device 14 Function 4.
y = Enable PCI Bridge Device 14 Function 4.
 
||
|- bgcolor="#eeeeee"
| ACPI_SCI_IRQ || southbridge/amd/cimx/sb700 || hex ||  ||
Set SCI IRQ to 9.
||
|- bgcolor="#eeeeee"
| REDIRECT_SBCIMX_TRACE_TO_SERIAL || southbridge/amd/cimx/sb700 || bool || Redirect AMD Southbridge CIMX Trace to serial console ||
This Option allows you to redirect the AMD Southbridge CIMX Trace
debug information to the serial console.
 
Warning: Only enable this option when debuging or tracing AMD CIMX code.
 
||
|- bgcolor="#eeeeee"
| S3_VOLATILE_POS || southbridge/amd/cimx/sb700 || hex || S3 volatile storage position ||
For a system with S3 feature, the BIOS needs to save some data to
non-volitile storage at cold boot stage.
 
||
|- bgcolor="#eeeeee"
| ENABLE_IDE_COMBINED_MODE || southbridge/amd/cimx/sb800 || bool || Enable SATA IDE combined mode ||
If Combined Mode is enabled. IDE controller is exposed and
SATA controller has control over Port0 through Port3,
IDE controller has control over Port4 and Port5.
 
If Combined Mode is disabled, IDE controller is hidden and
SATA controller has full control of all 6 Ports when operating in non-IDE mode.
 
||
|- bgcolor="#eeeeee"
| IDE_COMBINED_MODE || southbridge/amd/cimx/sb800 || hex || SATA Mode ||
Select the mode in which SATA should be driven. NATIVE AHCI, or RAID.
The default is NATIVE.
 
||
|- bgcolor="#eeeeee"
| SB800_SATA_IDE || southbridge/amd/cimx/sb800 || bool || NATIVE ||
NATIVE is the default mode and does not require a ROM.
 
||
|- bgcolor="#eeeeee"
| SB800_SATA_AHCI || southbridge/amd/cimx/sb800 || bool || AHCI ||
AHCI may work with or without AHCI ROM. It depends on the payload support.
For example, seabios does not require the AHCI ROM.
 
||
|- bgcolor="#eeeeee"
| SB800_SATA_RAID || southbridge/amd/cimx/sb800 || bool || RAID ||
sb800 RAID mode must have the two required ROM files.
 
||
|- bgcolor="#eeeeee"
| RAID_ROM_ID || southbridge/amd/cimx/sb800 || string || RAID device PCI IDs ||
1002,4392 for SATA NON-RAID5 module, 1002,4393 for SATA RAID5 mode
 
||
|- bgcolor="#eeeeee"
| RAID_MISC_ROM_POSITION || southbridge/amd/cimx/sb800 || hex || RAID Misc ROM Position ||
The RAID ROM requires that the MISC ROM is located between the range
0xFFF0_0000 to 0xFFF0_FFFF. Also, it must 1K bytes aligned.
The CONFIG_ROM_SIZE must larger than 0x100000.
 
||
|- bgcolor="#eeeeee"
| S3_VOLATILE_POS || southbridge/amd/cimx/sb800 || hex || S3 volatile storage position ||
For a system with S3 feature, the BIOS needs to save some data to
non-volitile storage at cold boot stage.
 
||
|- bgcolor="#eeeeee"
| SB800_IMC_FWM || southbridge/amd/cimx/sb800 || bool || Add IMC firmware ||
Add SB800 / Hudson 1 IMC Firmware to support the onboard fan control.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_AT_FFFA0000 || southbridge/amd/cimx/sb800 || bool || 0xFFFA0000 ||
The IMC and GEC ROMs requires a 'signature' located at one of several
fixed locations in memory.  The location used shouldn't matter, just
select an area that doesn't conflict with anything else.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_AT_FFF20000 || southbridge/amd/cimx/sb800 || bool || 0xFFF20000 ||
The IMC and GEC ROMs requires a 'signature' located at one of several
fixed locations in memory.  The location used shouldn't matter, just
select an area that doesn't conflict with anything else.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_AT_FFE20000 || southbridge/amd/cimx/sb800 || bool || 0xFFE20000 ||
The IMC and GEC ROMs requires a 'signature' located at one of several
fixed locations in memory.  The location used shouldn't matter, just
select an area that doesn't conflict with anything else.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_AT_FFC20000 || southbridge/amd/cimx/sb800 || bool || 0xFFC20000 ||
The IMC and GEC ROMs requires a 'signature' located at one of several
fixed locations in memory.  The location used shouldn't matter, just
select an area that doesn't conflict with anything else.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_AT_FF820000 || southbridge/amd/cimx/sb800 || bool || 0xFF820000 ||
The IMC and GEC ROMs requires a 'signature' located at one of several
fixed locations in memory.  The location used shouldn't matter, just
select an area that doesn't conflict with anything else.
 
||
|- bgcolor="#eeeeee"
| SB800_FWM_POSITION || southbridge/amd/cimx/sb800 || hex || Fan Control ||
Select the method of SB800 fan control to be used.  None would be
for either fixed maximum speed fans connected to the SB800 or for
an external chip controlling the fan speeds.  Manual control sets
up the SB800 fan control registers.  IMC fan control uses the SB800
IMC to actively control the fan speeds.
 
||
|- bgcolor="#eeeeee"
| SB800_NO_FAN_CONTROL || southbridge/amd/cimx/sb800 || bool || None ||
No SB800 Fan control - Do not set up the SB800 fan control registers.
 
||
|- bgcolor="#eeeeee"
| SB800_MANUAL_FAN_CONTROL || southbridge/amd/cimx/sb800 || bool || Manual ||
Configure the SB800 fan control registers in devicetree.cb.
 
||
|- bgcolor="#eeeeee"
| SB800_IMC_FAN_CONTROL || southbridge/amd/cimx/sb800 || bool || IMC Based ||
Set up the SB800 to use the IMC based Fan controller.  This requires
the IMC rom from AMD.  Configure the registers in devicetree.cb.
 
||
|- bgcolor="#eeeeee"
| SATA_CONTROLLER_MODE || southbridge/amd/cimx/sb900 || hex ||  ||
0x0 = Native IDE mode.
0x1 = RAID mode.
0x2 = AHCI mode.
0x3 = Legacy IDE mode.
0x4 = IDE->AHCI mode.
0x5 = AHCI mode as 7804 ID (AMD driver).
0x6 = IDE->AHCI mode as 7804 ID (AMD driver).
 
||
|- bgcolor="#eeeeee"
| PCIB_ENABLE || southbridge/amd/cimx/sb900 || bool ||  ||
n = Disable PCI Bridge Device 14 Function 4.
y = Enable PCI Bridge Device 14 Function 4.
 
||
|- bgcolor="#eeeeee"
| ACPI_SCI_IRQ || southbridge/amd/cimx/sb900 || hex ||  ||
Set SCI IRQ to 9.
 
||
|- bgcolor="#eeeeee"
| S3_VOLATILE_POS || southbridge/amd/cimx/sb900 || hex || S3 volatile storage position ||
For a system with S3 feature, the BIOS needs to save some data to
non-volitile storage at cold boot stage.
 
||
|- bgcolor="#eeeeee"
| HUDSON_XHCI_FWM || southbridge/amd/agesa/hudson || bool || Add xhci firmware ||
Add Hudson 2/3/4 XHCI Firmware to support the onboard usb3.0
 
||
|- bgcolor="#eeeeee"
| HUDSON_IMC_FWM || southbridge/amd/agesa/hudson || bool || Add imc firmware ||
Add Hudson 2/3/4 IMC Firmware to support the onboard fan control
 
||
|- bgcolor="#eeeeee"
| HUDSON_GEC_FWM || southbridge/amd/agesa/hudson || bool || Add gec firmware ||
Add Hudson 2/3/4 GEC Firmware
 
||
|- bgcolor="#eeeeee"
| HUDSON_FWM_POSITION || southbridge/amd/agesa/hudson || hex || Hudson Firmware rom Position ||
Hudson requires the firmware MUST be located at
a specific address (ROM start address + 0x20000), otherwise
xhci host Controller can not find or load the xhci firmware.
 
The firmware start address is dependent on the ROM chip size.
The default offset is 0x20000 from the ROM start address, namely
0xFFF20000 if flash chip size is 1M
0xFFE20000 if flash chip size is 2M
0xFFC20000 if flash chip size is 4M
0xFF820000 if flash chip size is 8M
0xFF020000 if flash chip size is 16M
||
|- bgcolor="#eeeeee"
| HUDSON_FWM_POSITION || southbridge/amd/agesa/hudson || hex || SATA Mode ||
Select the mode in which SATA should be driven. NATIVE AHCI, or RAID.
The default is NATIVE.
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_IDE || southbridge/amd/agesa/hudson || bool || NATIVE ||
NATIVE is the default mode and does not require a ROM.
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_RAID || southbridge/amd/agesa/hudson || bool || RAID ||
HUDSON RAID mode must have the two required ROM files.
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_AHCI || southbridge/amd/agesa/hudson || bool || AHCI ||
AHCI may work with or without AHCI ROM. It depends on the payload support.
For example, seabios does not require the AHCI ROM.
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_LEGACY_IDE || southbridge/amd/agesa/hudson || bool || LEGACY IDE ||
TODO
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_IDE2AHCI || southbridge/amd/agesa/hudson || bool || IDE to AHCI ||
TODO
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_AHCI7804 || southbridge/amd/agesa/hudson || bool || AHCI7804 ||
AHCI ROM Required, and AMD driver required in the OS.
 
||
|- bgcolor="#eeeeee"
| HUDSON_SATA_IDE2AHCI7804 || southbridge/amd/agesa/hudson || bool || IDE to AHCI7804 ||
AHCI ROM Required, and AMD driver required in the OS.
||
|- bgcolor="#eeeeee"
| RAID_ROM_ID || southbridge/amd/agesa/hudson || string || RAID device PCI IDs ||
1022,7802 for SATA NON-RAID5 module, 1022,7803 for SATA RAID5 mode
 
||
|- bgcolor="#eeeeee"
| RAID_MISC_ROM_POSITION || southbridge/amd/agesa/hudson || hex || RAID Misc ROM Position ||
The RAID ROM requires that the MISC ROM is located between the range
0xFFF0_0000 to 0xFFF0_FFFF. Also, it must 1K bytes aligned.
The CONFIG_ROM_SIZE must larger than 0x100000.
||
|- bgcolor="#eeeeee"
| S3_VOLATILE_POS || southbridge/amd/agesa/hudson || hex || S3 volatile storage position ||
For a system with S3 feature, the BIOS needs to save some data to
non-volitile storage at cold boot stage.
 
||
|- bgcolor="#eeeeee"
| HAVE_CMC || southbridge/intel/sch || bool || Add a CMC state machine binary ||
Select this option to add a CMC state machine binary to
the resulting coreboot image.
 
Note: Without this binary coreboot will not work
 
||
|- bgcolor="#eeeeee"
| CMC_FILE || southbridge/intel/sch || string || Intel CMC path and filename ||
The path and filename of the file to use as CMC state machine
binary.
 
||
|- bgcolor="#eeeeee"
| SERIRQ_CONTINUOUS_MODE || southbridge/intel/bd82x6x || bool ||  ||
If you set this option to y, the serial IRQ machine will be
operated in continuous mode.
 
||
|- bgcolor="#eeeeee"
| LOCK_MANAGEMENT_ENGINE || southbridge/intel/bd82x6x || bool || Lock Management Engine section ||
The Intel Management Engine supports preventing write accesses
from the host to the Management Engine section in the firmware
descriptor. If the ME section is locked, it can only be overwritten
with an external SPI flash programmer. You will want this if you
want to increase security of your ROM image once you are sure
that the ME firmware is no longer going to change.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| || || (comment) || || Super I/O ||
|- bgcolor="#eeeeee"
| || || (comment) || || Embedded Controllers ||
|- bgcolor="#eeeeee"
| EC_ACPI || ec/acpi || bool ||  ||
ACPI Embedded Controller interface. Mostly found in laptops.
 
||
||
|- bgcolor="#eeeeee"
| EC_COMPAL_ENE932 || ec/compal/ene932 || bool ||  ||
Interface to COMPAL ENE932 Embedded Controller.
 
||
 
||
||
|- bgcolor="#eeeeee"
| EC_SMSC_MEC1308 || ec/smsc/mec1308 || bool ||  ||
Shared memory mailbox interface to SMSC MEC1308 Embedded Controller.
 
||
 
||
 
||
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Devices || || || ||
|- bgcolor="#eeeeee"
| VGA_ROM_RUN || device || bool || Run VGA Option ROMs ||
Execute VGA Option ROMs in coreboot if found. This is required
to enable PCI/AGP/PCI-E video cards when not using a SeaBIOS
payload.
 
When using a SeaBIOS payload it runs all option ROMs with much
more complete BIOS interrupt services available than coreboot,
which some option ROMs require in order to function correctly.
 
If unsure, say N when using SeaBIOS as payload, Y otherwise.
 
||
|- bgcolor="#eeeeee"
| S3_VGA_ROM_RUN || device || bool || Re-run VGA Option ROMs on S3 resume ||
Execute VGA Option ROMs in coreboot when resuming from S3 suspend.
 
When using a SeaBIOS payload it runs all option ROMs with much
more complete BIOS interrupt services available than coreboot,
which some option ROMs require in order to function correctly.
 
If unsure, say N when using SeaBIOS as payload, Y otherwise.
 
||
|- bgcolor="#eeeeee"
| PCI_ROM_RUN || device || bool || Run non-VGA Option ROMs ||
Execute non-VGA PCI Option ROMs in coreboot if found.
 
Examples include IDE/SATA controller Option ROMs and Option ROMs
for network cards (NICs).
 
When using a SeaBIOS payload it runs all option ROMs with much
more complete BIOS interrupt services available than coreboot,
which some option ROMs require in order to function correctly.
 
If unsure, say N when using SeaBIOS as payload, Y otherwise.
 
||
|- bgcolor="#eeeeee"
| ON_DEVICE_ROM_RUN || device || bool || Run Option ROMs on PCI devices ||
Execute Option ROMs stored on PCI/PCIe/AGP devices in coreboot.
 
If disabled, only Option ROMs stored in CBFS will be executed by
coreboot. If you are concerned about security, you might want to
disable this option, but it might leave your system in a state of
degraded functionality.
 
When using a SeaBIOS payload it runs all option ROMs with much
more complete BIOS interrupt services available than coreboot,
which some option ROMs require in order to function correctly.
 
If unsure, say N when using SeaBIOS as payload, Y otherwise.
 
||
|- bgcolor="#eeeeee"
| PCI_OPTION_ROM_RUN_REALMODE || device || bool || Native mode ||
If you select this option, PCI Option ROMs will be executed
natively on the CPU in real mode. No CPU emulation is involved,
so this is the fastest, but also the least secure option.
(only works on x86/x64 systems)
 
||
|- bgcolor="#eeeeee"
| PCI_OPTION_ROM_RUN_YABEL || device || bool || Secure mode ||
If you select this option, the x86emu CPU emulator will be used to
execute PCI Option ROMs.
 
This option prevents Option ROMs from doing dirty tricks with the
system (such as installing SMM modules or hypervisors), but it is
also significantly slower than the native Option ROM initialization
method.
 
This is the default choice for non-x86 systems.
 
||
|- bgcolor="#eeeeee"
| YABEL_PCI_ACCESS_OTHER_DEVICES || device || bool || Allow Option ROMs to access other devices ||
Per default, YABEL only allows Option ROMs to access the PCI device
that they are associated with. However, this causes trouble for some
onboard graphics chips whose Option ROM needs to reconfigure the
north bridge.
 
||
|- bgcolor="#eeeeee"
| YABEL_PCI_FAKE_WRITING_OTHER_DEVICES_CONFIG || device || bool || Fake success on writing other device's config space ||
By default, YABEL aborts when the Option ROM tries to write to other
devices' config spaces. With this option enabled, the write doesn't
follow through, but the Option ROM is allowed to go on.
This can create issues such as hanging Option ROMs (if it depends on
that other register changing to the written value), so test for
impact before using this option.
 
||
|- bgcolor="#eeeeee"
| YABEL_VIRTMEM_LOCATION || device || hex || Location of YABEL's virtual memory ||
YABEL requires 1MB memory for its CPU emulation. This memory is
normally located at 16MB.
 
||
|- bgcolor="#eeeeee"
| YABEL_DIRECTHW || device || bool || Direct hardware access ||
YABEL consists of two parts: It uses x86emu for the CPU emulation and
additionally provides a PC system emulation that filters bad device
and memory access (such as PCI config space access to other devices
than the initialized one).
 
When choosing this option, x86emu will pass through all hardware
accesses to memory and I/O devices to the underlying memory and I/O
addresses. While this option prevents Option ROMs from doing dirty
tricks with the CPU (such as installing SMM modules or hypervisors),
they can still access all devices in the system.
Enable this option for a good compromise between security and speed.
 
||
|- bgcolor="#eeeeee"
| PCIEXP_COMMON_CLOCK || device || bool || Enable PCIe Common Clock ||
Detect and enable Common Clock on PCIe links.
 
||
|- bgcolor="#eeeeee"
| PCIEXP_ASPM || device || bool || Enable PCIe ASPM ||
Detect and enable ASPM on PCIe links.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: VGA BIOS || || || ||
|- bgcolor="#eeeeee"
| VGA_BIOS || device || bool || Add a VGA BIOS image ||
Select this option if you have a VGA BIOS image that you would
like to add to your ROM.
 
You will be able to specify the location and file name of the
image later.
 
||
|- bgcolor="#eeeeee"
| VGA_BIOS_FILE || device || string || VGA BIOS path and filename ||
The path and filename of the file to use as VGA BIOS.
 
||
|- bgcolor="#eeeeee"
| VGA_BIOS_ID || device || string || VGA device PCI IDs ||
The comma-separated PCI vendor and device ID that would associate
your VGA BIOS to your video card.
 
Example: 1106,3230
 
In the above example 1106 is the PCI vendor ID (in hex, but without
the "0x" prefix) and 3230 specifies the PCI device ID of the
video card (also in hex, without "0x" prefix).
 
||
|- bgcolor="#eeeeee"
| INTEL_MBI || device || bool || Add an MBI image ||
Select this option if you have an Intel MBI image that you would
like to add to your ROM.
 
You will be able to specify the location and file name of the
image later.
 
||
|- bgcolor="#eeeeee"
| MBI_FILE || device || string || Intel MBI path and filename ||
The path and filename of the file to use as VGA BIOS.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Display || || || ||
|- bgcolor="#eeeeee"
| FRAMEBUFFER_SET_VESA_MODE || device || bool || Set VESA framebuffer mode ||
Set VESA framebuffer mode (needed for bootsplash)
 
||
|- bgcolor="#eeeeee"
| FRAMEBUFFER_SET_VESA_MODE || device || bool || VESA framebuffer video mode ||
This option sets the resolution used for the coreboot framebuffer (and
bootsplash screen).
 
||
|- bgcolor="#eeeeee"
| FRAMEBUFFER_KEEP_VESA_MODE || device || bool || Keep VESA framebuffer ||
This option keeps the framebuffer mode set after coreboot finishes
execution. If this option is enabled, coreboot will pass a
framebuffer entry in its coreboot table and the payload will need a
framebuffer driver. If this option is disabled, coreboot will switch
back to text mode before handing control to a payload.
 
||
|- bgcolor="#eeeeee"
| BOOTSPLASH || device || bool || Show graphical bootsplash ||
This option shows a graphical bootsplash screen. The grapics are
loaded from the CBFS file bootsplash.jpg.
 
||
|- bgcolor="#eeeeee"
| BOOTSPLASH_FILE || device || string || Bootsplash path and filename ||
The path and filename of the file to use as graphical bootsplash
screen. The file format has to be jpg.
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Generic Drivers || || || ||
|- bgcolor="#eeeeee"
| ELOG || drivers/elog || bool || Support for flash based event log ||
Enable support for flash based event logging.
 
||
|- bgcolor="#eeeeee"
| ELOG_FLASH_BASE || drivers/elog || hex || Event log offset into flash ||
Offset into the flash chip for the ELOG block.
This should be allocated in the FMAP.
 
||
|- bgcolor="#eeeeee"
| ELOG_AREA_SIZE || drivers/elog || hex || Size of Event Log area in flash ||
This should be a multiple of flash block size.
 
Default is 4K.
 
||
|- bgcolor="#eeeeee"
| ELOG_FULL_THRESHOLD || drivers/elog || hex || Threshold at which flash is considered full ||
When the Event Log size is larger than this it will be shrunk
to ELOG_SHRINK_SIZE.  Must be greater than ELOG_AREA_SIZE, and
ELOG_AREA_SIZE - ELOG_FULL_THRESHOLD must be greater than the
maximum event size of 128.
 
Default is 75% of the log, or 3K.
 
||
|- bgcolor="#eeeeee"
| ELOG_SHRINK_SIZE || drivers/elog || hex || Resulting size when the event log is shrunk ||
When the Event Log is shrunk it will go to this size.
ELOG_AREA_SIZE - ELOG_SHRINK_SIZE must be less than
CONFIG_ELOG_FULL_THRESHOLD.
 
Default is 1K.
 
||
|- bgcolor="#eeeeee"
| ELOG_CBMEM || drivers/elog || bool || Store a copy of ELOG in CBMEM ||
This option will have ELOG store a copy of the flash event log
in a CBMEM region and export that address in SMBIOS to the OS.
This is useful if the ELOG location is not in memory mapped flash,
but it means that events added at runtime via the SMI handler
will not be reflected in the CBMEM copy of the log.
 
||
|- bgcolor="#eeeeee"
| ELOG_GSMI || drivers/elog || bool || SMI interface to write and clear event log ||
This interface is compatible with the linux kernel driver
available with CONFIG_GOOGLE_GSMI and can be used to write
kernel reset/shutdown messages to the event log.
 
||
|- bgcolor="#eeeeee"
| ELOG_BOOT_COUNT || drivers/elog || bool || Maintain a monotonic boot number in CMOS ||
Store a monotonic boot number in CMOS and provide an interface
to read the current value and increment the counter.  This boot
counter will be logged as part of the System Boot event.
 
||
|- bgcolor="#eeeeee"
| ELOG_BOOT_COUNT_CMOS_OFFSET || drivers/elog || int || Offset in CMOS to store the boot count ||
This value must be greater than 16 bytes so as not to interfere
with the standard RTC region.  Requires 8 bytes.
 
||
||
|- bgcolor="#eeeeee"
| DRIVER_MAXIM_MAX77686 || drivers/maxim/max77686 || bool ||  ||
Maxim MAX77686 power regulator
 
||
 
||
||
|- bgcolor="#eeeeee"
| DRIVERS_OXFORD_OXPCIE || drivers/oxford/oxpcie || bool || Oxford OXPCIe952 ||
Support for Oxford OXPCIe952 serial port PCIe cards.
Currently only devices with the vendor ID 0x1415 and device ID
0xc158 will work.
NOTE: Right now you have to set the base address of your OXPCIe952
card to exactly the value that the device allocator would set them
later on, or serial console functionality will stop as soon as the
resource allocator assigns a new base address to the device.
 
||
|- bgcolor="#eeeeee"
| OXFORD_OXPCIE_BRIDGE_BUS || drivers/oxford/oxpcie || hex || OXPCIe's PCIe bridge bus number ||
While coreboot is executing code from ROM, the coreboot resource
allocator has not been running yet. Hence PCI devices living behind
a bridge are not yet visible to the system. In order to use an
OXPCIe952 based PCIe card, coreboot has to set up the PCIe bridge
that controls the OXPCIe952 controller first.
 
||
|- bgcolor="#eeeeee"
| OXFORD_OXPCIE_BRIDGE_DEVICE || drivers/oxford/oxpcie || hex || OXPCIe's PCIe bridge device number ||
While coreboot is executing code from ROM, the coreboot resource
allocator has not been running yet. Hence PCI devices living behind
a bridge are not yet visible to the system. In order to use an
OXPCIe952 based PCIe card, coreboot has to set up the PCIe bridge
that controls the OXPCIe952 controller first.
 
||
|- bgcolor="#eeeeee"
| OXFORD_OXPCIE_BRIDGE_FUNCTION || drivers/oxford/oxpcie || hex || OXPCIe's PCIe bridge function number ||
While coreboot is executing code from ROM, the coreboot resource
allocator has not been running yet. Hence PCI devices living behind
a bridge are not yet visible to the system. In order to use an
OXPCIe952 based PCIe card, coreboot has to set up the PCIe bridge
that controls the OXPCIe952 controller first.
 
||
|- bgcolor="#eeeeee"
| OXFORD_OXPCIE_BRIDGE_SUBORDINATE || drivers/oxford/oxpcie || hex || OXPCIe's PCIe bridge subordinate bus ||
While coreboot is executing code from ROM, the coreboot resource
allocator has not been running yet. Hence PCI devices living behind
a bridge are not yet visible to the system. In order to use an
OXPCIe952 based PCIe card, coreboot has to set up the PCIe bridge
that controls the OXPCIe952 controller first.
 
||
|- bgcolor="#eeeeee"
| OXFORD_OXPCIE_BASE_ADDRESS || drivers/oxford/oxpcie || hex || Base address for rom stage console ||
While coreboot is executing code from ROM, the coreboot resource
allocator has not been running yet. Hence PCI devices living behind
a bridge are not yet visible to the system. In order to use an
OXPCIe952 based PCIe card, coreboot has to set up a temporary address
for the OXPCIe952 controller.
 
 
||
 
||
||
|- bgcolor="#eeeeee"
| DRIVERS_PS2_KEYBOARD || drivers/pc80 || bool || PS/2 keyboard init ||
Enable this option to initialize PS/2 keyboards found connected
to the PS/2 port.
 
Some payloads (eg, filo) require this option.  Other payloads
(eg, SeaBIOS, Linux) do not require it.
Initializing a PS/2 keyboard can take several hundred milliseconds.
 
If you know you will only use a payload which does not require
this option, then you can say N here to speed up boot time.
Otherwise say Y.
 
||
|- bgcolor="#eeeeee"
| TPM || drivers/pc80 || bool ||  ||
Enable this option to enable TPM support in coreboot.
 
If unsure, say N.
 
||
||
|- bgcolor="#eeeeee"
| RTL8168_ROM_DISABLE || drivers/realtek || bool || Disable RTL8168 ROM ||
Just enough of a driver to make coreboot not look for an Option ROM.
No configuration is necessary for the OS to pick up the device.
 
||
||
|- bgcolor="#eeeeee"
| DRIVERS_SIL_3114 || drivers/sil || bool || Silicon Image SIL3114 ||
It sets PCI class to IDE compatible native mode, allowing
SeaBIOS, FILO etc... to boot from it.
 
 
 
||
||
|- bgcolor="#eeeeee"
| SPI_FLASH || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_SMM || drivers/spi || bool || SPI flash driver support in SMM ||
Select this option if you want SPI flash support in SMM.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_EON || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by EON.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_MACRONIX || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by Macronix.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_SPANSION || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by Spansion.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_SST || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by SST.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_STMICRO || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by ST MICRO.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_WINBOND || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by Winbond.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_NO_FAST_READ || drivers/spi || bool || Disable Fast Read command ||
Select this option if your setup requires to avoid "fast read"s
from the SPI flash parts.
 
||
|- bgcolor="#eeeeee"
| SPI_FLASH_GIGADEVICE || drivers/spi || bool ||  ||
Select this option if your chipset driver needs to store certain
data in the SPI flash and your SPI flash is made by Gigadevice.
 
||
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Console || || || ||
|- bgcolor="#eeeeee"
| SERIAL_CONSOLE || console || bool || Serial port console output ||
Send coreboot debug output to a serial port
 
||
|- bgcolor="#eeeeee"
| EARLY_SERIAL_CONSOLE || console || bool ||  ||
Use serial console during early (pre-RAM) boot stages
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL8250 || console || bool || Serial port console output (I/O mapped, 8250-compatible) ||
Send coreboot debug output to an I/O mapped serial port console.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL8250MEM || console || bool || Serial port console output (memory mapped, 8250-compatible) ||
Send coreboot debug output to a memory mapped serial port console.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_NONSTANDARD_MEM || console || bool || Serial port console output (memory-mapped, device-specific) ||
Send coreboot debug output to a memory mapped serial port console
on a device-specific UART.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_COM1 || console || bool || COM1/ttyS0, I/O port 0x3f8 ||
Serial console on COM1/ttyS0 at I/O port 0x3f8.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_COM2 || console || bool || COM2/ttyS1, I/O port 0x2f8 ||
Serial console on COM2/ttyS1 at I/O port 0x2f8.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_COM3 || console || bool || COM3/ttyS2, I/O port 0x3e8 ||
Serial console on COM3/ttyS2 at I/O port 0x3e8.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_COM4 || console || bool || COM4/ttyS3, I/O port 0x2e8 ||
Serial console on COM4/ttyS3 at I/O port 0x2e8.
 
||
|- bgcolor="#eeeeee"
| TTYS0_BASE || console || hex ||  ||
Map the COM port names to the respective I/O port.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_115200 || console || bool || 115200 ||
Set serial port Baud rate to 115200.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_57600 || console || bool || 57600 ||
Set serial port Baud rate to 57600.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_38400 || console || bool || 38400 ||
Set serial port Baud rate to 38400.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_19200 || console || bool || 19200 ||
Set serial port Baud rate to 19200.
||
|- bgcolor="#eeeeee"
| CONSOLE_SERIAL_9600 || console || bool || 9600 ||
Set serial port Baud rate to 9600.
 
||
|- bgcolor="#eeeeee"
| TTYS0_BAUD || console || int ||  ||
Map the Baud rates to an integer.
 
||
|- bgcolor="#eeeeee"
| USBDEBUG || console || bool || USB 2.0 EHCI debug dongle support ||
This option allows you to use a so-called USB EHCI Debug device
(such as the Ajays NET20DC, AMIDebug RX, or a system using the
Linux "EHCI Debug Device gadget" driver found in recent kernel)
to retrieve the coreboot debug messages (instead, or in addition
to, a serial port).
 
This feature is NOT supported on all chipsets in coreboot!
 
It also requires a USB2 controller which supports the EHCI
Debug Port capability.
 
See http://www.coreboot.org/EHCI_Debug_Port for an up-to-date list
of supported controllers.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| USBDEBUG_DEFAULT_PORT || console || int || Default USB port to use as Debug Port ||
This option selects which physical USB port coreboot will try to
use as EHCI Debug Port first (valid values are: 1-15).
 
If coreboot doesn't detect an EHCI Debug Port dongle on this port,
it will try all the other ports one after the other. This will take
a few seconds of time though, and thus slow down the booting process.
 
Hence, if you select the correct port here, you can speed up
your boot time. Which USB port number (1-15) refers to which
actual port on your mainboard (potentially also USB pin headers
on your mainboard) is highly board-specific, and you'll likely
have to find out by trial-and-error.
 
||
|- bgcolor="#eeeeee"
| ONBOARD_VGA_IS_PRIMARY || console || bool || Use onboard VGA as primary video device ||
If not selected, the last adapter found will be used.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_NE2K || console || bool || Network console over NE2000 compatible Ethernet adapter ||
Send coreboot debug output to a Ethernet console, it works
same way as Linux netconsole, packets are received to UDP
port 6666 on IP/MAC specified with options bellow.
Use following netcat command: nc -u -l -p 6666
 
||
|- bgcolor="#eeeeee"
| CONSOLE_NE2K_DST_MAC || console || string || Destination MAC address of remote system ||
Type in either MAC address of logging system or MAC address
of the router.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_NE2K_DST_IP || console || string || Destination IP of logging system ||
This is IP adress of the system running for example
netcat command to dump the packets.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_NE2K_SRC_IP || console || string || IP address of coreboot system ||
This is the IP of the coreboot system
 
||
|- bgcolor="#eeeeee"
| CONSOLE_NE2K_IO_PORT || console || hex || NE2000 adapter fixed IO port address ||
This is the IO port address for the IO port
on the card, please select some non-conflicting region,
32 bytes of IO spaces will be used (and align on 32 bytes
boundary, qemu needs broader align)
 
||
|- bgcolor="#eeeeee"
| CONSOLE_CBMEM || console || bool || Send console output to a CBMEM buffer ||
Enable this to save the console output in a CBMEM buffer. This would
allow to see coreboot console output from Linux space.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_CBMEM_BUFFER_SIZE || console || hex || Room allocated for console output in CBMEM ||
Space allocated for console output storage in CBMEM. The default
value (64K or 0x10000 bytes) is large enough to accommodate
even the BIOS_SPEW level.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_CAR_BUFFER_SIZE || console || hex || Room allocated for console output in Cache as RAM ||
Console is used before RAM is initialized. This is the room reserved
in the DCACHE based RAM to keep console output before it can be
saved in a CBMEM buffer. 3K bytes should be enough even for the
BIOS_SPEW level.
 
 
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_8 || console || bool || 8: SPEW ||
Way too many details.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_7 || console || bool || 7: DEBUG ||
Debug-level messages.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_6 || console || bool || 6: INFO ||
Informational messages.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_5 || console || bool || 5: NOTICE ||
Normal but significant conditions.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_4 || console || bool || 4: WARNING ||
Warning conditions.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_3 || console || bool || 3: ERR ||
Error conditions.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_2 || console || bool || 2: CRIT ||
Critical conditions.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_1 || console || bool || 1: ALERT ||
Action must be taken immediately.
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL_0 || console || bool || 0: EMERG ||
System is unusable.
 
||
|- bgcolor="#eeeeee"
| MAXIMUM_CONSOLE_LOGLEVEL || console || int ||  ||
Map the log level config names to an integer.
 
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_8 || console || bool || 8: SPEW ||
Way too many details.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_7 || console || bool || 7: DEBUG ||
Debug-level messages.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_6 || console || bool || 6: INFO ||
Informational messages.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_5 || console || bool || 5: NOTICE ||
Normal but significant conditions.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_4 || console || bool || 4: WARNING ||
Warning conditions.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_3 || console || bool || 3: ERR ||
Error conditions.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_2 || console || bool || 2: CRIT ||
Critical conditions.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_1 || console || bool || 1: ALERT ||
Action must be taken immediately.
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL_0 || console || bool || 0: EMERG ||
System is unusable.
 
||
|- bgcolor="#eeeeee"
| DEFAULT_CONSOLE_LOGLEVEL || console || int ||  ||
Map the log level config names to an integer.
 
||
|- bgcolor="#eeeeee"
| CONSOLE_POST || console || bool || Show POST codes on the debug console ||
If enabled, coreboot will additionally print POST codes (which are
usually displayed using a so-called "POST card" ISA/PCI/PCI-E
device) on the debug console.
 
||
|- bgcolor="#eeeeee"
| CMOS_POST || console || bool || Store post codes in CMOS for debugging ||
If enabled, coreboot will store post codes in CMOS and switch between
two offsets on each boot so the last post code in the previous boot
can be retrieved.  This uses 3 bytes of CMOS.
 
||
|- bgcolor="#eeeeee"
| CMOS_POST_OFFSET || console || hex || Offset into CMOS to store POST codes ||
If CMOS_POST is enabled then an offset into CMOS must be provided.
If CONFIG_HAVE_OPTION_TABLE is enabled then it will use the value
defined in the mainboard option table.
 
||
|- bgcolor="#eeeeee"
| IO_POST || console || bool || Send POST codes to an IO port ||
If enabled, POST codes will be written to an IO port.
 
||
|- bgcolor="#eeeeee"
| IO_POST_PORT || console || hex || IO port for POST codes ||
POST codes on x86 are typically written to the LPC bus on port
0x80. However, it may be desireable to change the port number
depending on the presence of coprocessors/microcontrollers or if the
platform does not support IO in the conventional x86 manner.
 
||
 
|- bgcolor="#eeeeee"
| HAVE_HARD_RESET || toplevel || bool ||  ||
This variable specifies whether a given board has a hard_reset
function, no matter if it's provided by board code or chipset code.
 
||
|- bgcolor="#eeeeee"
| HAVE_OPTION_TABLE || toplevel || bool ||  ||
This variable specifies whether a given board has a cmos.layout
file containing NVRAM/CMOS bit definitions.
It defaults to 'n' but can be selected in mainboard/*/Kconfig.
 
||
|- bgcolor="#eeeeee"
| VGA || toplevel || bool ||  ||
Build board-specific VGA code.
 
||
|- bgcolor="#eeeeee"
| GFXUMA || toplevel || bool ||  ||
Enable Unified Memory Architecture for graphics.
 
||
|- bgcolor="#eeeeee"
| HAVE_ACPI_TABLES || toplevel || bool ||  ||
This variable specifies whether a given board has ACPI table support.
It is usually set in mainboard/*/Kconfig.
Whether or not the ACPI tables are actually generated by coreboot
is configurable by the user via GENERATE_ACPI_TABLES.
 
||
|- bgcolor="#eeeeee"
| HAVE_MP_TABLE || toplevel || bool ||  ||
This variable specifies whether a given board has MP table support.
It is usually set in mainboard/*/Kconfig.
Whether or not the MP table is actually generated by coreboot
is configurable by the user via GENERATE_MP_TABLE.
 
||
|- bgcolor="#eeeeee"
| HAVE_PIRQ_TABLE || toplevel || bool ||  ||
This variable specifies whether a given board has PIRQ table support.
It is usually set in mainboard/*/Kconfig.
Whether or not the PIRQ table is actually generated by coreboot
is configurable by the user via GENERATE_PIRQ_TABLE.
 
||
|- bgcolor="#eeeeee"
| MAX_PIRQ_LINKS || toplevel || int ||  ||
This variable specifies the number of PIRQ interrupt links which are
routable. On most chipsets, this is 4, INTA through INTD. Some
chipsets offer more than four links, commonly up to INTH. They may
also have a separate link for ATA or IOAPIC interrupts. When the PIRQ
table specifies links greater than 4, pirq_route_irqs will not
function properly, unless this variable is correctly set.
 
||
|- bgcolor="#6699dd"
! align="left" | Menu: System tables || || || ||
|- bgcolor="#eeeeee"
| GENERATE_ACPI_TABLES || toplevel || bool || Generate ACPI tables ||
Generate ACPI tables for this board.
 
If unsure, say Y.
 
||
|- bgcolor="#eeeeee"
| GENERATE_MP_TABLE || toplevel || bool || Generate an MP table ||
Generate an MP table (conforming to the Intel MultiProcessor
specification 1.4) for this board.
 
If unsure, say Y.
 
||
|- bgcolor="#eeeeee"
| GENERATE_PIRQ_TABLE || toplevel || bool || Generate a PIRQ table ||
Generate a PIRQ table for this board.
 
If unsure, say Y.
 
||
|- bgcolor="#eeeeee"
| GENERATE_SMBIOS_TABLES || toplevel || bool || Generate SMBIOS tables ||
Generate SMBIOS tables for this board.
 
If unsure, say Y.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Payload || || || ||
|- bgcolor="#eeeeee"
| PAYLOAD_NONE || toplevel || bool || None ||
Select this option if you want to create an "empty" coreboot
ROM image for a certain mainboard, i.e. a coreboot ROM image
which does not yet contain a payload.
 
For such an image to be useful, you have to use 'cbfstool'
to add a payload to the ROM image later.
 
||
|- bgcolor="#eeeeee"
| PAYLOAD_ELF || toplevel || bool || An ELF executable payload ||
Select this option if you have a payload image (an ELF file)
which coreboot should run as soon as the basic hardware
initialization is completed.
 
You will be able to specify the location and file name of the
payload image later.
 
||
|- bgcolor="#eeeeee"
| PAYLOAD_SEABIOS || toplevel || bool || SeaBIOS ||
Select this option if you want to build a coreboot image
with a SeaBIOS payload. If you don't know what this is
about, just leave it enabled.
 
See http://coreboot.org/Payloads for more information.
 
||
|- bgcolor="#eeeeee"
| PAYLOAD_FILO || toplevel || bool || FILO ||
Select this option if you want to build a coreboot image
with a FILO payload. If you don't know what this is
about, just leave it enabled.
 
See http://coreboot.org/Payloads for more information.
 
||
|- bgcolor="#eeeeee"
| SEABIOS_STABLE || toplevel || bool || 1.7.1 ||
Stable SeaBIOS version
||
|- bgcolor="#eeeeee"
| SEABIOS_MASTER || toplevel || bool || master ||
Newest SeaBIOS version
||
|- bgcolor="#eeeeee"
| FILO_STABLE || toplevel || bool || 0.6.0 ||
Stable FILO version
||
|- bgcolor="#eeeeee"
| FILO_MASTER || toplevel || bool || HEAD ||
Newest FILO version
||
|- bgcolor="#eeeeee"
| PAYLOAD_FILE || toplevel || string || Payload path and filename ||
The path and filename of the ELF executable file to use as payload.
 
||
|- bgcolor="#eeeeee"
| COMPRESSED_PAYLOAD_LZMA || toplevel || bool || Use LZMA compression for payloads ||
In order to reduce the size payloads take up in the ROM chip
coreboot can compress them using the LZMA algorithm.
 
||
 
|- bgcolor="#6699dd"
! align="left" | Menu: Debugging || || || ||
|- bgcolor="#eeeeee"
| GDB_STUB || toplevel || bool || GDB debugging support ||
If enabled, you will be able to set breakpoints for gdb debugging.
See src/arch/x86/lib/c_start.S for details.
 
||
|- bgcolor="#eeeeee"
| GDB_WAIT || toplevel || bool || Wait for a GDB connection ||
If enabled, coreboot will wait for a GDB connection.
 
||
|- bgcolor="#eeeeee"
| DEBUG_CBFS || toplevel || bool || Output verbose CBFS debug messages ||
This option enables additional CBFS related debug messages.
 
||
|- bgcolor="#eeeeee"
| DEBUG_RAM_SETUP || toplevel || bool || Output verbose RAM init debug messages ||
This option enables additional RAM init related debug messages.
It is recommended to enable this when debugging issues on your
board which might be RAM init related.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_CAR || toplevel || bool || Output verbose Cache-as-RAM debug messages ||
This option enables additional CAR related debug messages.
||
|- bgcolor="#eeeeee"
| DEBUG_PIRQ || toplevel || bool || Check PIRQ table consistency ||
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_SMBUS || toplevel || bool || Output verbose SMBus debug messages ||
This option enables additional SMBus (and SPD) debug messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_SMI || toplevel || bool || Output verbose SMI debug messages ||
This option enables additional SMI related debug messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_SMM_RELOCATION || toplevel || bool || Debug SMM relocation code ||
This option enables additional SMM handler relocation related
debug messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_MALLOC || toplevel || bool || Output verbose malloc debug messages ||
This option enables additional malloc related debug messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_ACPI || toplevel || bool || Output verbose ACPI debug messages ||
This option enables additional ACPI related debug messages.
 
Note: This option will slightly increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| REALMODE_DEBUG || toplevel || bool || Enable debug messages for option ROM execution ||
This option enables additional x86emu related debug messages.
 
Note: This option will increase the time to emulate a ROM.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG || toplevel || bool || Output verbose x86emu debug messages ||
This option enables additional x86emu related debug messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_JMP || toplevel || bool || Trace JMP/RETF ||
Print information about JMP and RETF opcodes from x86emu.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_TRACE || toplevel || bool || Trace all opcodes ||
Print _all_ opcodes that are executed by x86emu.
 
WARNING: This will produce a LOT of output and take a long time.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_PNP || toplevel || bool || Log Plug&Play accesses ||
Print Plug And Play accesses made by option ROMs.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_DISK || toplevel || bool || Log Disk I/O ||
Print Disk I/O related messages.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_PMM || toplevel || bool || Log PMM ||
Print messages related to POST Memory Manager (PMM).
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_VBE || toplevel || bool || Debug VESA BIOS Extensions ||
Print messages related to VESA BIOS Extension (VBE) functions.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_INT10 || toplevel || bool || Redirect INT10 output to console ||
Let INT10 (i.e. character output) calls print messages to debug output.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_INTERRUPTS || toplevel || bool || Log intXX calls ||
Print messages related to interrupt handling.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_CHECK_VMEM_ACCESS || toplevel || bool || Log special memory accesses ||
Print messages related to accesses to certain areas of the virtual
memory (e.g. BDA (BIOS Data Area) or interrupt vectors)
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_MEM || toplevel || bool || Log all memory accesses ||
Print memory accesses made by option ROM.
Note: This also includes accesses to fetch instructions.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| X86EMU_DEBUG_IO || toplevel || bool || Log IO accesses ||
Print I/O accesses made by option ROM.
 
Note: This option will increase the size of the coreboot image.
 
If unsure, say N.
 
||
|- bgcolor="#eeeeee"
| DEBUG_TPM || toplevel || bool || Output verbose TPM debug messages ||
This option enables additional TPM related debug messages.
 
||
|- bgcolor="#eeeeee"
| DEBUG_SPI_FLASH || toplevel || bool || Output verbose SPI flash debug messages ||
This option enables additional SPI flash related debug messages.
 
||
|- bgcolor="#eeeeee"
| DEBUG_INTEL_ME || toplevel || bool || Verbose logging for Intel Management Engine ||
Enable verbose logging for Intel Management Engine driver that
is present on Intel 6-series chipsets.
||
|- bgcolor="#eeeeee"
| LLSHELL || toplevel || bool || Built-in low-level shell ||
If enabled, you will have a low level shell to examine your machine.
Put llshell() in your (romstage) code to start the shell.
See src/arch/x86/llshell/llshell.inc for details.
 
||
|- bgcolor="#eeeeee"
| TRACE || toplevel || bool || Trace function calls ||
If enabled, every function will print information to console once
the function is entered. The syntax is ~0xaaaabbbb(0xccccdddd)
the 0xaaaabbbb is the actual function and 0xccccdddd is EIP
of calling function. Please note some printk releated functions
are omitted from trace to have good looking console dumps.
||
 
|- bgcolor="#eeeeee"
| POWER_BUTTON_DEFAULT_ENABLE || toplevel || bool ||  ||
Select when the board has a power button which can optionally be
disabled by the user.
 
||
|- bgcolor="#eeeeee"
| POWER_BUTTON_DEFAULT_DISABLE || toplevel || bool ||  ||
Select when the board has a power button which can optionally be
enabled by the user, e.g. when the board ships with a jumper over
the power switch contacts.
 
||
|- bgcolor="#eeeeee"
| POWER_BUTTON_FORCE_ENABLE || toplevel || bool ||  ||
Select when the board requires that the power button is always
enabled.
 
||
|- bgcolor="#eeeeee"
| POWER_BUTTON_FORCE_DISABLE || toplevel || bool ||  ||
Select when the board requires that the power button is always
disabled, e.g. when it has been hardwired to ground.
 
||
|- bgcolor="#eeeeee"
| POWER_BUTTON_IS_OPTIONAL || toplevel || bool ||  ||
Internal option that controls ENABLE_POWER_BUTTON visibility.
 
||
|- bgcolor="#eeeeee"
| CHROMEOS || vendorcode/google/chromeos || bool ||  ||
Enable ChromeOS specific features like the GPIO sub table in
the coreboot table. NOTE: Enabling this option on an unsupported
board will most likely break your build.
 
||
|- bgcolor="#6699dd"
! align="left" | Menu: ChromeOS || || || ||
|- bgcolor="#eeeeee"
| VBNV_OFFSET || vendorcode/google/chromeos || hex ||  ||
CMOS offset for VbNv data. This value must match cmos.layout
in the mainboard directory, minus 14 bytes for the RTC.
 
||
|- bgcolor="#eeeeee"
| VBNV_SIZE || vendorcode/google/chromeos || hex ||  ||
CMOS storage size for VbNv data. This value must match cmos.layout
in the mainboard directory.
 
||
|- bgcolor="#eeeeee"
| FLASHMAP_OFFSET || vendorcode/google/chromeos || hex || Flash Map Offset ||
Offset of flash map in firmware image
 
||
 
|- bgcolor="#eeeeee"
| NO_TPM_RESUME || vendorcode/google/chromeos || bool ||  ||
On some boards the TPM stays powered up in S3. On those
boards, booting Windows will break if the TPM resume command
is sent during an S3 resume.
 
||
 
 
||
 
||
 
||
|}

Latest revision as of 20:02, 9 June 2018

This page redirects to an external site: https://coreboot.org/status/kconfig-options.html