SeaBIOS: Difference between revisions

From coreboot
Jump to navigation Jump to search
(→‎Adding a graphical "bootsplash" image: Note BMPs and config parameter system.)
 
(39 intermediate revisions by 7 users not shown)
Line 1: Line 1:
[http://www.seabios.org '''SeaBIOS'''] is an open-source legacy BIOS implementation which can be used as a coreboot [[Payloads|payload]]. It implements the standard [https://secure.wikimedia.org/wikipedia/en/wiki/BIOS BIOS] calling interfaces that a typical x86 proprietary BIOS implements.
[http://seabios.org '''SeaBIOS'''] is an open-source legacy BIOS implementation which can be used as a coreboot [[Payloads|payload]]. It implements the standard [https://secure.wikimedia.org/wikipedia/en/wiki/BIOS BIOS] calling interfaces that a typical x86 proprietary BIOS implements.


This page describes using SeaBIOS with coreboot. SeaBIOS can also run natively in [[QEMU]] and [http://bochs.sourceforge.net/ bochs] — see the [http://git.linuxtogo.org/?p=kevin/seabios.git;a=blob;f=README;hb=HEAD SeaBIOS README] file for information on non-coreboot uses.
This page describes using SeaBIOS with coreboot. SeaBIOS can also run natively in [[QEMU]] and [http://bochs.sourceforge.net/ bochs] — see the [http://seabios.org SeaBIOS website] for information on non-coreboot uses.


= Use cases =
= Use cases =
Line 13: Line 13:
SeaBIOS has been tested with Windows XP, Windows 2008, Windows Vista (64/32 bit), Windows 7 (32 bit and 64 bit).
SeaBIOS has been tested with Windows XP, Windows 2008, Windows Vista (64/32 bit), Windows 7 (32 bit and 64 bit).


However, Windows has a very strict ACPI interpreter, and many coreboot boards do not have a complete [[ACPI in coreboot|ACPI definition]]. As a result, many coreboot boards will fail during Windows boot (eg, it may fail with a '''STOP 0xA5''' code).
However, Windows has a very strict ACPI interpreter, and some coreboot boards do not have a complete [[ACPI|ACPI definition]]. As a result, some coreboot boards may fail during Windows boot (eg, it may fail with a '''STOP 0xA5''' code).


So far [[ASUS M2V-MX SE]] and [[GIGABYTE GA-M57SLI-S4]] have known good working ACPI and are able to boot XP/Vista/Windows 7. Please ask on the [[Mailinglist|mailing list]] for the status of other boards/chipsets.
Many boards do have working ACPI and are able to boot XP/Vista/Windows 7. Please check the board documentation or ask on the [[Mailinglist|mailing list]] if unsure of the status.


== Linux ==
== Linux ==
Line 49: Line 49:
</source>
</source>


There's also a [http://code.coreboot.org/p/seabios/source/changes/master/ gitweb] facility to browse the latest source code online.
There's also a [https://review.coreboot.org/gitweb/cgit/seabios.git/ cgit] facility to browse the latest source code online.


Run '''make menuconfig''' and set the following variables:
Run '''make menuconfig''' and set the following variables:
Line 66: Line 66:
== coreboot ==
== coreboot ==


For best results, configure coreboot with '''CONFIG_WRITE_HIGH_TABLES''' and '''CONFIG_VGA_BRIDGE_SETUP''' both enabled, and '''CONFIG_VGA_ROM_RUN''' and '''CONFIG_PCI_ROM_RUN''' both disabled.
Configure coreboot with the following all disabled: '''CONFIG_VGA_ROM_RUN''', '''CONFIG_PCI_ROM_RUN''', '''CONFIG_ON_DEVICE_ROM_RUN'''


Finally, configure the SeaBIOS '''out/bios.bin.elf''' file as the coreboot payload and build coreboot. The resulting '''coreboot.rom''' file will contain both SeaBIOS and coreboot, and it can be flashed to a ROM chip.
Then configure the SeaBIOS '''out/bios.bin.elf''' file as the coreboot payload and build coreboot. The resulting '''coreboot.rom''' file will contain both SeaBIOS and coreboot, and it can be flashed to a ROM chip.


= SeaBIOS and CBFS =
= SeaBIOS and CBFS =


SeaBIOS can read the coreboot flash filesystem and extract files.
SeaBIOS can read the coreboot flash filesystem and extract files. Details on the CBFS files that SeaBIOS supports are on the [http://seabios.org/Runtime_config SeaBIOS wiki].


When SeaBIOS scans the target machine's PCI devices, it will recognize option ROMs in CBFS that have the form '''pciVVVV,DDDD.rom'''. It will also run any file in the directory '''vgaroms/''' as a VGA option ROM not specific to a device and files in '''genroms/''' as a generic option ROM not specific to a device. In the above cases, SeaBIOS will recognize files with a '''.lzma''' suffix, and automatically decompress them (eg, '''pci1106,3344.rom.lzma''' and '''vgaroms/sgabios.bin.lzma''').
The following examples show some commonly used features.
 
SeaBIOS can also load a graphical bootsplash image from '''bootsplash.jpg''', payloads found in the CBFS directory '''img/''', and floppy images found in the '''floppyimg/''' directory.
 
Further, SeaBIOS can obtain configuration information from CBFS.  A file '''bootorder''' determines the order of devices and methods to attempt to boot the system from.  Additional configuration items may be found in the CBFS '''etc/''' directory.
 
The examples below show some common uses of these features.


== Adding a VGA option ROM ==
== Adding a VGA option ROM ==
Line 86: Line 80:
It is frequently necessary to add a VGA option ROM to CBFS in order to use a VGA adapter that is built-in to a motherboard. Note, VGA adapters on external cards (PCI, AGP, PCIe) do not require this step as SeaBIOS will automatically extract the VGA BIOS directly from the card. For machines without a VGA adapter, please follow the [[#Adding sgabios support|sgabios instructions]] below.
It is frequently necessary to add a VGA option ROM to CBFS in order to use a VGA adapter that is built-in to a motherboard. Note, VGA adapters on external cards (PCI, AGP, PCIe) do not require this step as SeaBIOS will automatically extract the VGA BIOS directly from the card. For machines without a VGA adapter, please follow the [[#Adding sgabios support|sgabios instructions]] below.


=== Using your BIOS's VGA option rom ===
The first step is to find the vendor and device ID of the built-in VGA adapter. This information can be found from '''lspci''':
The first step is to find the vendor and device ID of the built-in VGA adapter. This information can be found from '''lspci''':


Line 97: Line 92:


<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add /path/to/vgabios.bin pci1106,3344.rom raw
$ ./build/cbfstool build/coreboot.rom add -f /path/to/vgabios.bin -n pci1106,3344.rom -t optionrom
$ ./build/cbfstool coreboot.rom print
$ ./build/cbfstool build/coreboot.rom print
</source>
</source>


Line 104: Line 99:


<source lang="bash">
<source lang="bash">
$ lzma -zc /path/to/vgabios.bin > vgabios.bin.lzma
$ ./build/cbfstool build/coreboot.rom add -f /path/to/vgabios.bin -c lzma -n pci1106,3344.rom.lzma -t optionrom
$ ./build/cbfstool coreboot.rom add vgabios.bin.lzma pci1106,3344.rom.lzma raw
$ ./build/cbfstool build/coreboot.rom print
$ ./build/cbfstool coreboot.rom print
</source>
</source>


After the above is done, one can write the '''coreboot.rom''' file to flash. SeaBIOS will extract the VGA ROM and run it during boot.
After the above is done, one can write the '''coreboot.rom''' file to flash. SeaBIOS will extract the VGA ROM and run it during boot.


== Adding gpxe support ==
=== Adding sgabios support ===


A [[GPXE|gpxe]] option ROM can nicely complement SeaBIOS and coreboot by adding network boot support. Adding gpxe is similar to [[#Adding a VGA option ROM]]. The first step is to find the Ethernet vendor/device ID. For example:
An [http://code.google.com/p/sgabios/ sgabios] option ROM can forward many VGA BIOS requests and keyboard events over a serial port. One can deploy it in addition to the primary VGA BIOS or by itself.


<source lang="bash">
If the target machine does not have a VGA adapter, then one should install sgabios. Most bootloaders (eg, GRUB) require a VGA BIOS in order to function properly &mdash; the sgabios ROM can fill this requirement.
$ lspci -vnn
...
00:09.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL-8110SC/8169SC Gigabit Ethernet ['''10ec:8167'''] (rev 10)
</source>


Then one can build a gpxe option ROM. For example:
Place the sgabios ROM file in the '''vgaroms/''' directory of CBFS. For example:


<source lang="bash">
<source lang="bash">
$ cd /path/to/gpxe/src/
$ ./build/cbfstool build/coreboot.rom add -f /path/to/sgabios.bin -n vgaroms/sgabios.bin -t raw
$ make bin/10ec8167.rom
$ ./build/cbfstool build/coreboot.rom print
</source>
</source>


And add it to the coreboot image. For example:
When using sgabios, all the characters that SeaBIOS writes to the screen will be seen twice &mdash; once from SeaBIOS sending the character to the serial port and once from sgabios forwarding the character. To prevent the duplicates set the [[#Other Configuration items|config file]] '''etc/screen-and-debug''' to zero. This could be done like that:
 
<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add /path/to/gpxe/src/bin/10ec8167.rom pci10ec,8167.rom raw
$ ./build/cbfstool build/coreboot.rom add-int -i 0 -n etc/screen-and-debug
$ ./build/cbfstool coreboot.rom print
</source>
</source>


As with VGA option ROMs, the gpxe option ROM may be compressed with LZMA. However, compression won't significantly reduce gpxe's size as it implements its own compression.
=== Using coreboot VGA support ===
Coreboot can initialize the GPU of some mainboards. After initializing the GPU, the information about it is passed to the payload.
 
SeaBIOS can provide an option rom that implements legacy VGA BIOS compatibility for coreboot initialized GPUs. To use this feature select '''CONFIG_VGA_COREBOOT''' (in "make menuconfig" under "VGA ROM  ---> VGA Hardware Type" select "coreboot linear framebuffer").


In addition to gpxe, other option ROMs can be added in the same manner.
The resulting option rom '''out/vgabios.rom''' should be added to the '''vgaroms/''' directory of CBFS. For example:


== Adding sgabios support ==
<source lang="bash">
$ ./build/cbfstool build/coreboot.rom add -f /path/to/seabios/out/vgabios.bin -n vgaroms/seavgabios.bin -t raw
$ ./build/cbfstool build/coreboot.rom print
</source>


An [http://code.google.com/p/sgabios/ sgabios] option ROM can forward many VGA BIOS requests and keyboard events over a serial port. One can deploy it in addition to the primary VGA BIOS or by itself.
One should note that many bootloaders expect some vbios functionality which this vgabios does not provide.
To overcome this issue one can use a bootloader not requiring this functionality. For instance grub works fine if configured in textmode. To achieve this comment out or add to /etc/default/grub:


If the target machine does not have a VGA adapter, then one should install sgabios. Most bootloaders (eg, GRUB) require a VGA BIOS in order to function properly &mdash; the sgabios ROM can fill this requirement.
GRUB_TERMINAL_OUTPUT=console


Place the sgabios ROM file in the '''vgaroms/''' directory of CBFS. For example:
and regenerate the grub configuration:


<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add /path/to/sgabios.bin vgaroms/sgabios.bin raw
grub-mkconfig -o /boot/grub/grub.cfg
$ ./build/cbfstool coreboot.rom print
</source>
</source>


When using sgabios, all the characters that SeaBIOS writes to the screen will be seen twice &mdash; once from SeaBIOS sending the character to the serial port and once from sgabios forwarding the character. To prevent the duplicates unset '''CONFIG_SCREEN_AND_DEBUG''' in '''make menuconfig''' or (on newer versions of SeaBIOS) set the [[#Other Configuration items|config file]] '''etc/screen-and-debug''' to zero.
=== Geode option roms ===
There are two VGA option roms for geode in SeaBIOS, they can be found in "VGA ROM  --->" in "make menuconfig":
 
* The first one is for the Geode LX, its named "GeodeLX" in "make menuconfig"
* The second one if for the Geode GX2, its named "Geode GX2" in "make menuconfig"


== Adding a graphical "bootsplash" image ==
== Adding a graphical "bootsplash" image ==
Line 159: Line 157:


<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add /path/to/image.jpg bootsplash.jpg raw
$ ./build/cbfstool build/coreboot.rom add -f /path/to/image.jpg -n bootsplash.jpg -t raw
$ ./build/cbfstool coreboot.rom print
$ ./build/cbfstool build/coreboot.rom print
</source>
</source>


Line 168: Line 166:


The JPEG viewer in SeaBIOS uses a simplified decoding algorithm. It supports most common JPEGs, but does not support all possible formats. Please see the [[#Trouble reporting|Trouble reporting]] section if a valid image isn't displayed properly.
The JPEG viewer in SeaBIOS uses a simplified decoding algorithm. It supports most common JPEGs, but does not support all possible formats. Please see the [[#Trouble reporting|Trouble reporting]] section if a valid image isn't displayed properly.
== Adding gpxe support ==
A [[GPXE|gpxe]] option ROM can nicely complement SeaBIOS and coreboot by adding network boot support. Adding gpxe is similar to [[#Adding a VGA option ROM]]. The first step is to find the Ethernet vendor/device ID. For example:
<source lang="bash">
$ lspci -vnn
...
00:09.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL-8110SC/8169SC Gigabit Ethernet ['''10ec:8167'''] (rev 10)
</source>
Then one can build a gpxe option ROM. For example:
<source lang="bash">
$ cd /path/to/gpxe/src/
$ make bin/10ec8167.rom
</source>
And add it to the coreboot image. For example:
<source lang="bash">
$ ./build/cbfstool build/coreboot.rom add -f /path/to/gpxe/src/bin/10ec8167.rom -n pci10ec,8167.rom -t optionrom
$ ./build/cbfstool build/coreboot.rom print
</source>
As with VGA option ROMs, the gpxe option ROM may be compressed with LZMA. However, compression won't significantly reduce gpxe's size as it implements its own compression.
In addition to gpxe, other option ROMs can be added in the same manner.


== Adding payloads ==
== Adding payloads ==
Line 174: Line 200:


<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add-payload /path/to/payload.elf img/MyPayload l
$ ./build/cbfstool build/coreboot.rom add-payload -f /path/to/payload.elf -n img/MyPayload
$ ./build/cbfstool coreboot.rom print
$ ./build/cbfstool build/coreboot.rom print
</source>
</source>


During boot, one can press the '''F12''' key to get a boot menu. SeaBIOS will show all files in the '''img/''' directory, and one can instruct SeaBIOS to run them.
During boot, one can press the '''ESC''' key to get a boot menu. SeaBIOS will show all files in the '''img/''' directory, and one can instruct SeaBIOS to run them.


SeaBIOS supports both uncompressed and LZMA compressed payloads.
SeaBIOS supports both uncompressed and LZMA compressed payloads.
Line 187: Line 213:


<source lang="bash">
<source lang="bash">
$ lzma -zc /path/to/myfloppy.img > myfloppy.img.lzma
$ ./build/cbfstool build/coreboot.rom add -f /path/to/myfloppy.img -c lzma -n floppyimg/MyFloppy.lzma -t raw
$ ./build/cbfstool coreboot.rom add myfloppy.img.lzma floppyimg/MyFloppy.lzma raw
$ ./build/cbfstool build/coreboot.rom print
$ ./build/cbfstool coreboot.rom print
</source>
</source>


Both uncompressed and LZMA compressed images are supported. Several floppy formats are available: 360K, 1.2MB, 720K, 1.44MB, 2.88MB, 160K, 180K, 320K.
Both uncompressed and LZMA compressed images are supported. Several floppy formats are available: 360K, 1.2MB, 720K, 1.44MB, 2.88MB, 160K, 180K, 320K. SeaBIOS expects the uncompressed images size to be equal to the ones just mentioned. Else, given enough debug, it will complain with: "No floppy type found for ramdisk size".


The floppy image will appear as writable to the system, however all writes are discarded on reboot.
The floppy image will appear as writable to the system, however all writes are discarded on reboot.
Line 218: Line 243:


<source lang="bash">
<source lang="bash">
$ ./build/cbfstool coreboot.rom add mybootlist.txt bootorder raw
$ ./build/cbfstool build/coreboot.rom add -f mybootlist.txt -n bootorder -t raw
$ ./build/cbfstool coreboot.rom print
$ ./build/cbfstool build/coreboot.rom print
</source>
</source>


Line 227: Line 252:


<source lang="bash">
<source lang="bash">
$ /path/to/seabios/tools/encodeint.py boot-menu-wait 5500
$ ./build/cbfstool build/coreboot.rom add-int -i 5500 -n etc/boot-menu-wait
$ ./build/cbfstool coreboot.rom add boot-menu-wait etc/boot-menu-wait raw
$ ./build/cbfstool build/coreboot.rom print
$ ./build/cbfstool coreboot.rom print
</source>
</source>


The SeaBIOS tool '''tools/encodeint.py''' will create a litte-endian encoded binary integer which can be placed into a CBFS file.
The cbfstool "add-int" command will create a litte-endian encoded binary integer and place it into the specified CBFS file.
 
See the [http://seabios.org/Runtime_config SeaBIOS wiki] for details on available options.


{| border=1
== File aliases ==
|+ Configuration variables
 
|-
It is possible to create the equivalent of "symbolic links" in CBFS so that one file's content appears under another name. To do this, create a links file with one line per link and each line having the format of "linkname" and "destname" separated by a space characterFor example, the "links" file may look like:
! Filename !! Description
 
|-
pci1234,1000.rom somerom.rom
| boot-menu-wait || Amount of time (in milliseconds) to wait at the boot menu prompt before selecting the default boot.
  pci1234,1001.rom somerom.rom
|-
pci1234,1002.rom somerom.rom
| extra-pci-roots || If the target machine has multiple independent root buses set this to a positive valueThe SeaBIOS PCI probe will then search for the given number of extra root buses.
 
|-
Then add the "links" file to CBFS:
| ps2-keyboard-spinup || Some PS2 keyboards don't respond to commands immediately after powering onOne may specify the amount of time (in milliseconds) here to allow as additional time for the keyboard to become responsive.
 
|-
<source lang="bash">
| optionroms-checksum || Option ROMs are required to have correct checksums. However, some option ROMs in the wild don't correctly follow the specifications and have bad checksums. Set this to a zero value to allow SeaBIOS to execute them anyways.
$ ./build/cbfstool build/coreboot.rom add -f links -n links -t raw
|-
$ ./build/cbfstool build/coreboot.rom print
| s3-resume-vga-init || Set this to a non-zero value to instruct SeaBIOS to run the vga rom on an S3 resume.
</source>
|-
 
| screen-and-debug || Set this to a zero value to instruct SeaBIOS to not write characters it sends to the screen to the debug ports. This can be useful when using [[#Adding sgabios support|sgabios]].
The above example would cause SeaBIOS to treat "pci1234,1000.rom" or "pci1234,1001.rom" as files with the same content as the file "somerom.rom".
|-
| boot-fail-wait || If no boot devices are found SeaBIOS will reboot after 60 seconds. Set this to the amount of time (in milliseconds) to customize the reboot delay or set to -1 to disable rebooting when no boot devices are found. (This setting is only in git versions after 20120601.)
|}


= Trouble reporting =
= Trouble reporting =


If you are experiencing problems with SeaBIOS, it's useful to increase the debugging level. This is done by running '''make menuconfig''' and setting '''CONFIG_DEBUG_LEVEL''' to a higher value. A debug level of 8 will show a lot of diagnostic information without flooding the serial port (levels above 8 will frequently cause too much data).
If you are experiencing problems with SeaBIOS, please follow the directions on the [http://seabios.org/Debugging SeaBIOS wiki] to report the issue.
 
To report an issue, please collect the serial boot log with SeaBIOS set to a debug level of 8 and forward the full log along with a description of the problem to the coreboot [[Mailinglist|mailing list]].

Latest revision as of 12:50, 10 May 2018

SeaBIOS is an open-source legacy BIOS implementation which can be used as a coreboot payload. It implements the standard BIOS calling interfaces that a typical x86 proprietary BIOS implements.

This page describes using SeaBIOS with coreboot. SeaBIOS can also run natively in QEMU and bochs — see the SeaBIOS website for information on non-coreboot uses.

Use cases

Any software requiring 16-bit BIOS services benefits from SeaBIOS (eg, Windows and DOS). SeaBIOS also enables booting Linux out of the box (using standard boot-loaders like GRUB and Syslinux).

SeaBIOS supports booting from ATA hard drives, ATAPI CDROMs, USB hard drives, USB CDROMs, payloads in flash, and from Option ROMs (eg, SCSI or network cards). SeaBIOS can initialize and use a PS/2 keyboard or USB keyboard.

Windows

SeaBIOS has been tested with Windows XP, Windows 2008, Windows Vista (64/32 bit), Windows 7 (32 bit and 64 bit).

However, Windows has a very strict ACPI interpreter, and some coreboot boards do not have a complete ACPI definition. As a result, some coreboot boards may fail during Windows boot (eg, it may fail with a STOP 0xA5 code).

Many boards do have working ACPI and are able to boot XP/Vista/Windows 7. Please check the board documentation or ask on the mailing list if unsure of the status.

Linux

SeaBIOS has been tested with GRUB, LILO, and Syslinux. Linux booting works well.

Other

SeaBIOS has also been tested with FreeDOS, NetBSD, and OpenBSD.

Because SeaBIOS implements the standard x86 BIOS interfaces, it is expected many other operating systems and boot-loaders will work.

Building

Building via coreboot's menuconfig

Probably the easiest way to use SeaBIOS as coreboot payload is to simply use the coreboot build process, which downloads and builds SeaBIOS as payload by default nowadays. You just have to run the following in your coreboot checkout:

<source lang="bash"> $ make menuconfig $ make </source>

Both SeaBIOS and coreboot will be built, and SeaBIOS will be added as payload to the coreboot.rom image that is being built.

Manual build

One can download the latest version of SeaBIOS through a git repository:

<source lang="bash"> $ git clone git://git.seabios.org/seabios.git seabios $ cd seabios </source>

There's also a cgit facility to browse the latest source code online.

Run make menuconfig and set the following variables:

  • CONFIG_COREBOOT 1
  • CONFIG_DEBUG_SERIAL 1

Then:

<source lang="bash"> $ make </source>

The final SeaBIOS payload file is out/bios.bin.elf.

coreboot

Configure coreboot with the following all disabled: CONFIG_VGA_ROM_RUN, CONFIG_PCI_ROM_RUN, CONFIG_ON_DEVICE_ROM_RUN

Then configure the SeaBIOS out/bios.bin.elf file as the coreboot payload and build coreboot. The resulting coreboot.rom file will contain both SeaBIOS and coreboot, and it can be flashed to a ROM chip.

SeaBIOS and CBFS

SeaBIOS can read the coreboot flash filesystem and extract files. Details on the CBFS files that SeaBIOS supports are on the SeaBIOS wiki.

The following examples show some commonly used features.

Adding a VGA option ROM

It is frequently necessary to add a VGA option ROM to CBFS in order to use a VGA adapter that is built-in to a motherboard. Note, VGA adapters on external cards (PCI, AGP, PCIe) do not require this step as SeaBIOS will automatically extract the VGA BIOS directly from the card. For machines without a VGA adapter, please follow the sgabios instructions below.

Using your BIOS's VGA option rom

The first step is to find the vendor and device ID of the built-in VGA adapter. This information can be found from lspci:

<source lang="bash"> $ lspci -vnn ... 01:00.0 VGA compatible controller [0300]: VIA Technologies, Inc. UniChrome Pro IGP [1106:3344] (rev 01) (prog-if 00 [VGA controller]) </source>

In the above example, the VGA vendor/device ID is 1106:3344. Obtain the VGA ROM (eg, vgabios.bin) and add it to the ROM with:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/vgabios.bin -n pci1106,3344.rom -t optionrom $ ./build/cbfstool build/coreboot.rom print </source>

Alternatively, SeaBIOS supports LZMA compressed option ROMs. Use the following to add a compressed option ROM instead:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/vgabios.bin -c lzma -n pci1106,3344.rom.lzma -t optionrom $ ./build/cbfstool build/coreboot.rom print </source>

After the above is done, one can write the coreboot.rom file to flash. SeaBIOS will extract the VGA ROM and run it during boot.

Adding sgabios support

An sgabios option ROM can forward many VGA BIOS requests and keyboard events over a serial port. One can deploy it in addition to the primary VGA BIOS or by itself.

If the target machine does not have a VGA adapter, then one should install sgabios. Most bootloaders (eg, GRUB) require a VGA BIOS in order to function properly — the sgabios ROM can fill this requirement.

Place the sgabios ROM file in the vgaroms/ directory of CBFS. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/sgabios.bin -n vgaroms/sgabios.bin -t raw $ ./build/cbfstool build/coreboot.rom print </source>

When using sgabios, all the characters that SeaBIOS writes to the screen will be seen twice — once from SeaBIOS sending the character to the serial port and once from sgabios forwarding the character. To prevent the duplicates set the config file etc/screen-and-debug to zero. This could be done like that: <source lang="bash"> $ ./build/cbfstool build/coreboot.rom add-int -i 0 -n etc/screen-and-debug </source>

Using coreboot VGA support

Coreboot can initialize the GPU of some mainboards. After initializing the GPU, the information about it is passed to the payload.

SeaBIOS can provide an option rom that implements legacy VGA BIOS compatibility for coreboot initialized GPUs. To use this feature select CONFIG_VGA_COREBOOT (in "make menuconfig" under "VGA ROM ---> VGA Hardware Type" select "coreboot linear framebuffer").

The resulting option rom out/vgabios.rom should be added to the vgaroms/ directory of CBFS. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/seabios/out/vgabios.bin -n vgaroms/seavgabios.bin -t raw $ ./build/cbfstool build/coreboot.rom print </source>

One should note that many bootloaders expect some vbios functionality which this vgabios does not provide. To overcome this issue one can use a bootloader not requiring this functionality. For instance grub works fine if configured in textmode. To achieve this comment out or add to /etc/default/grub:

GRUB_TERMINAL_OUTPUT=console

and regenerate the grub configuration:

<source lang="bash"> grub-mkconfig -o /boot/grub/grub.cfg </source>

Geode option roms

There are two VGA option roms for geode in SeaBIOS, they can be found in "VGA ROM --->" in "make menuconfig":

  • The first one is for the Geode LX, its named "GeodeLX" in "make menuconfig"
  • The second one if for the Geode GX2, its named "Geode GX2" in "make menuconfig"

Adding a graphical "bootsplash" image

SeaBIOS can show a custom JPEG image or BMP image during bootup. To enable this, add the JPEG file to flash with the name bootsplash.jpg or BMP file as bootsplash.bmp. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/image.jpg -n bootsplash.jpg -t raw $ ./build/cbfstool build/coreboot.rom print </source>

The size of the image determines the video mode to use for showing the image. Make sure the dimensions of the image exactly correspond to an available video mode (eg, 640x480, or 1024x768), otherwise it will not be displayed.

SeaBIOS will show the image during the wait for the boot menu (if the boot menu has been disabled, users will not see the image). The image should probably have "Press F12 for boot menu" embedded in it so users know they can enter the normal SeaBIOS boot menu. By default, the boot menu prompt (and thus graphical image) is shown for 2.5 seconds. This can be customized via a configuration parameter.

The JPEG viewer in SeaBIOS uses a simplified decoding algorithm. It supports most common JPEGs, but does not support all possible formats. Please see the Trouble reporting section if a valid image isn't displayed properly.

Adding gpxe support

A gpxe option ROM can nicely complement SeaBIOS and coreboot by adding network boot support. Adding gpxe is similar to #Adding a VGA option ROM. The first step is to find the Ethernet vendor/device ID. For example:

<source lang="bash"> $ lspci -vnn ... 00:09.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL-8110SC/8169SC Gigabit Ethernet [10ec:8167] (rev 10) </source>

Then one can build a gpxe option ROM. For example:

<source lang="bash"> $ cd /path/to/gpxe/src/ $ make bin/10ec8167.rom </source>

And add it to the coreboot image. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/gpxe/src/bin/10ec8167.rom -n pci10ec,8167.rom -t optionrom $ ./build/cbfstool build/coreboot.rom print </source>

As with VGA option ROMs, the gpxe option ROM may be compressed with LZMA. However, compression won't significantly reduce gpxe's size as it implements its own compression.

In addition to gpxe, other option ROMs can be added in the same manner.

Adding payloads

Most payloads can also be launched from SeaBIOS. To add a payload, build the corresponding .elf file and then add it to the coreboot.rom file in the img/ directory. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add-payload -f /path/to/payload.elf -n img/MyPayload $ ./build/cbfstool build/coreboot.rom print </source>

During boot, one can press the ESC key to get a boot menu. SeaBIOS will show all files in the img/ directory, and one can instruct SeaBIOS to run them.

SeaBIOS supports both uncompressed and LZMA compressed payloads.

Adding a floppy image

It is possible to embed an image of a floppy in flash. SeaBIOS can then boot from and redirect floppy BIOS calls to the flash image. This is mainly useful for legacy software (such as DOS utilities). To use this feature, place a floppy image into the CBFS directory floppyimg/. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f /path/to/myfloppy.img -c lzma -n floppyimg/MyFloppy.lzma -t raw $ ./build/cbfstool build/coreboot.rom print </source>

Both uncompressed and LZMA compressed images are supported. Several floppy formats are available: 360K, 1.2MB, 720K, 1.44MB, 2.88MB, 160K, 180K, 320K. SeaBIOS expects the uncompressed images size to be equal to the ones just mentioned. Else, given enough debug, it will complain with: "No floppy type found for ramdisk size".

The floppy image will appear as writable to the system, however all writes are discarded on reboot.

When using this system, SeaBIOS reserves high-memory to store the floppy. The reserved memory is then no longer available for OS use, so this feature should only be used when needed.

Configuring boot order

Place a file in CBFS with the name bootorder to configure the boot up order. The file should be ASCII text and contain one line per boot method. The description of each boot method follows an Open Firmware device path format. SeaBIOS will attempt to boot from each item in the file — first line of the file first.

The easiest way to find the available boot methods is to look for "Searching bootorder for" in the SeaBIOS serial output. For example, one may see lines similar to:

Searching bootorder for: /pci@i0cf8/*@f/drive@1/disk@0
Searching bootorder for: /pci@i0cf8/*@f,1/drive@2/disk@1
Searching bootorder for: /pci@i0cf8/usb@10,4/*@2

The above represents the patterns SeaBIOS will search for in the bootorder file. However, it's safe to just copy and paste the pattern into bootorder. For example, the file:

/pci@i0cf8/usb@10,4/*@2
/pci@i0cf8/*@f/drive@1/disk@0

will instruct SeaBIOS to attempt to boot from the given USB drive first and then attempt the given ATA harddrive second.

Once a file has been created, add it to CBFS with the name bootorder. For example:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f mybootlist.txt -n bootorder -t raw $ ./build/cbfstool build/coreboot.rom print </source>

Other Configuration items

Additional configuration options are available in the CBFS etc/ directory. For example, to set the duration of the boot menu to five and a half seconds, one would do the following:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add-int -i 5500 -n etc/boot-menu-wait $ ./build/cbfstool build/coreboot.rom print </source>

The cbfstool "add-int" command will create a litte-endian encoded binary integer and place it into the specified CBFS file.

See the SeaBIOS wiki for details on available options.

File aliases

It is possible to create the equivalent of "symbolic links" in CBFS so that one file's content appears under another name. To do this, create a links file with one line per link and each line having the format of "linkname" and "destname" separated by a space character. For example, the "links" file may look like:

pci1234,1000.rom somerom.rom
pci1234,1001.rom somerom.rom
pci1234,1002.rom somerom.rom

Then add the "links" file to CBFS:

<source lang="bash"> $ ./build/cbfstool build/coreboot.rom add -f links -n links -t raw $ ./build/cbfstool build/coreboot.rom print </source>

The above example would cause SeaBIOS to treat "pci1234,1000.rom" or "pci1234,1001.rom" as files with the same content as the file "somerom.rom".

Trouble reporting

If you are experiencing problems with SeaBIOS, please follow the directions on the SeaBIOS wiki to report the issue.