Board:tyan/s2881: Difference between revisions

From coreboot
Jump to navigation Jump to search
(→‎Hardware: fix sizes of rom chips)
m (Phcoder moved page Tyan S2881 to Board:tyan/s2881)
 
(8 intermediate revisions by 4 users not shown)
Line 5: Line 5:
   http://www.ioss.com.tw/web/English/WheretoBuy.html
   http://www.ioss.com.tw/web/English/WheretoBuy.html


While LinuxBIOS replaces the functions of the proprietary bios, it does NOT replace the VGA bios. If you want VGA on your linuxBIOS'd machine (not strictly necessary for servers), you will need to extract the VGA bios and concatenate it with the LinuxBIOS image, before burning it to your ROM. See below for details.
While coreboot replaces the functions of the proprietary bios, it does NOT replace the VGA bios. If you want VGA on your coreboot'd machine (not strictly necessary for servers), you will need to extract the VGA bios and concatenate it with the coreboot image, before burning it to your ROM. See below for details.


This wiki page is maintained by Ward Vandewege (ward at gnu dot org).
This wiki page is maintained by Ward Vandewege (ward at gnu dot org).
Line 11: Line 11:
===Hardware===
===Hardware===


The S2881 comes with a 4Mbit BIOS chip, which does not suffice to put a Linux kernel in ROM. However, it's sufficient to have a fully functional LinuxBIOS with FILO payload, as described below.
The S2881 comes with a 4Mbit BIOS chip, which does not suffice to put a Linux kernel in ROM. However, it's sufficient to have a fully functional coreboot with FILO payload, as described below.


It turns out that you can also use an 8Mbit BIOS chip on the S2881. For instance, flashrom supports flashing the SST 49LF080A on the S2881 without problems. Having a 1Mbit chip allows putting a Linux kernel into the BIOS, as described in [http://www.linuxbios.org/Tyan_S2892_Build_Tutorial the S2892 the OLPC way] build tutorial.
It turns out that you can also use an 8Mbit BIOS chip on the S2881. For instance, flashrom supports flashing the SST 49LF080A on the S2881 without problems. Having a 8Mbit chip allows putting a Linux kernel into the BIOS, as described in [http://www.linuxbios.org/Tyan_S2892_Build_Tutorial the S2892 the OLPC way] build tutorial.


===Payload===
===Payload===


LinuxBIOS requires a [http://linuxbios.org/index.php/Payloads Payload] to boot an operating system.
coreboot requires a [[Payloads|Payload]] to boot an operating system.


If you want to boot from the network, you will need to use [http://www.etherboot.org Etherboot].  
If you want to boot from the network, you will need to use [http://www.etherboot.org Etherboot].  


If you want to boot from an IDE drive, SATA drive, USB stick or CDROM, you can use [http://linuxbios.org/index.php/FILO FILO].  
If you want to boot from an IDE drive, SATA drive, USB stick or CDROM, you can use [[FILO]].  


===Building the payload===
===Building the payload===
Line 69: Line 69:
   terminal --timeout=15 serial console
   terminal --timeout=15 serial console


Now execute 'make', which will generate a filo.elf file that will be your payload. You will need to refer to this file to build LinuxBIOS as explained below, because it gets included in the LinuxBIOS ROM image.
Now execute 'make', which will generate a filo.elf file that will be your payload. You will need to refer to this file to build coreboot as explained below, because it gets included in the coreboot ROM image.


===Building LinuxBIOS===
===Building coreboot ===


Download LinuxBIOS (http://linuxbios.org/index.php/Download_LinuxBIOS). You need subversion revision 2251 or higher. Note that revisions 2288 through 2295 are known bad, do not use those.
Download coreboot ([[Download coreboot]]). You need subversion revision 2251 or higher. Note that revisions 2288 through 2295 are known bad, do not use those.


If you want VGA support, a few changes are required in the linuxbios source tree. Edit this file:
If you want VGA support, a few changes are required in the coreboot source tree. Edit this file:


   src/mainboard/tyan/s2881/Options.lb
   src/mainboard/tyan/s2881/Options.lb
Line 84: Line 84:
   default CONFIG_CONSOLE_VGA=1
   default CONFIG_CONSOLE_VGA=1
   default CONFIG_PCI_ROM_RUN=1
   default CONFIG_PCI_ROM_RUN=1
Now - if you are going to be using a rom chip larger than 512K, you will need to also make a change in
  src/mainboard/tyan/s2881/Config.lb
Assuming you are using a 1MB chip, modify the onboard vga device info from this
  chip drivers/pci/onboard
    device pci 6.0 on end
    register "rom_address" = "0xfff80000"
  end
to this
  chip drivers/pci/onboard
    device pci 6.0 on end
    register "rom_address" = "0xfff00000"
  end
This tells coreboot where to find the VGA rom. Depending on the size of the rom chip you use, it will be at a different address (which is calculated from the top of the rom chip, and we prepend the vga rom to the coreboot image!).


Whether you want VGA or not, build a tyan/s2881 tree.
Whether you want VGA or not, build a tyan/s2881 tree.
Line 107: Line 127:
===VGA bios===
===VGA bios===


Skip this section if you don't need VGA support in your LinuxBIOS.
Skip this section if you don't need VGA support in your coreboot.


The s2881 VGA bios is 36K long. The last 4KB are not available in RAM after boot (with the proprietary BIOS), however, so we can NOT use this method to extract the VGA BIOS:
The s2881 VGA bios is 36K long. The last 4KB are not available in RAM after boot (with the proprietary BIOS), however, so we can NOT use this method to extract the VGA BIOS:
Line 193: Line 213:
We know that our VGA BIOS is 36K long. Only 2 files fit the bill: amipci_00.20 and amipci_03.20. If you run 'strings' on both files, you'll see that the former is the VGA BIOS, and the latter is the Option ROM for the Broadcom network card.
We know that our VGA BIOS is 36K long. Only 2 files fit the bill: amipci_00.20 and amipci_03.20. If you run 'strings' on both files, you'll see that the former is the VGA BIOS, and the latter is the Option ROM for the Broadcom network card.
      
      
So, now that we have the proper VGA bios image (36K long), we need to concatenate the VGA bios with the linuxbios image
So, now that we have the proper VGA bios image (36K long), we need to concatenate the VGA bios with the coreboot image


   <code>cat amipci_00.20 linuxbios.rom > final_linuxbios.rom</code>
   <code>cat amipci_00.20 coreboot.rom > final_coreboot.rom</code>


===Burning the bios===
===Burning the bios===
Line 203: Line 223:
On the target machine:
On the target machine:


   cd LinuxBIOSv2/util/flashrom
   cd coreboot-v2/util/flashrom
   ./flashrom -v -w path/to/your/linuxbios.rom
   ./flashrom -v -w path/to/your/coreboot.rom


If you want VGA support, make sure you burn the final_linuxbios.rom image!
If you want VGA support, make sure you burn the final_coreboot.rom image!


===Booting LinuxBIOS===
===Booting coreboot===


You now need to 'halt' the machine. A soft reset won't work the first time you boot from the proprietary BIOS into LinuxBIOS.  
You now need to 'halt' the machine. A soft reset won't work the first time you boot from the proprietary BIOS into coreboot.  


Since we set up serial output in the LinuxBIOS configuration files above, you will want to hook up a serial console (or a copy of minicom or the like) to see what the box is doing while starting up. Keep your eyes on the screen after hitting the power button - LinuxBIOS will be up and running way before you expect it!
Since we set up serial output in the coreboot configuration files above, you will want to hook up a serial console (or a copy of minicom or the like) to see what the box is doing while starting up. Keep your eyes on the screen after hitting the power button - coreboot will be up and running way before you expect it!


If you have problems, don't despair. Power down the box, switch the biossavior to 'ORG' and boot in the proprietary BIOS. Just don't forget to switch the biossavior back to the 'RD1' position before flashing the BIOS!
If you have problems, don't despair. Power down the box, switch the biossavior to 'ORG' and boot in the proprietary BIOS. Just don't forget to switch the biossavior back to the 'RD1' position before flashing the BIOS!


See what went wrong, and subscribe and post to the friendly and helpful [http://wiki.linuxbios.org/index.php/Mailinglist mailing list] if you can't figure it out by yourself.
See what went wrong, and subscribe and post to the friendly and helpful [http://wiki.linuxbios.org/index.php/Mailinglist mailing list] if you can't figure it out by yourself.
===Hardware monitoring===
The s2881 has 2 HWM chips, each driving a number of fans and temperature sensors. As of SVN revision 2674, the main HWM chip that drives most of the fans (ADT7463) is configured to be in automatic (hardware) fan control mode, based on the temperature sensors connected to it. These are the specific HWM settings:
* fans under automatic hardware control
* fans blow by default at 25% speed
* if any of the sensors goes above 55C (Tmin), the fans start blowing harder to compensate
* if any of the sensors reach 70C (THERM limit), the fans start blowing at full speed
These settings should lead to longer fan life, reduced power consumption, and better protection against accidental fan speed misconfiguration from software. And the machine is a lot less loud under light load.
The original Tyan BIOS had these settings:
  * fans under manual (software) control
  * fans blow by default at 100% speed
  * automatic mode Tmin set to 90C
  * automatic mode THERM limit set to 100C
The coreboot settings should be more ideal for real world deployment, and are a lot safer.
{{GPL}}
[[Category:Tutorials]]

Latest revision as of 23:22, 18 January 2014

Before you begin

Do yourself a favor, and get a BiosSavior before you begin. There are different models, make sure you order the one you need. It depends on the size and type of the ROM chip on your board. Our S2881 board has a 4Mbit PLCC chip. This is the list of BiosSavior vendors:

 http://www.ioss.com.tw/web/English/WheretoBuy.html

While coreboot replaces the functions of the proprietary bios, it does NOT replace the VGA bios. If you want VGA on your coreboot'd machine (not strictly necessary for servers), you will need to extract the VGA bios and concatenate it with the coreboot image, before burning it to your ROM. See below for details.

This wiki page is maintained by Ward Vandewege (ward at gnu dot org).

Hardware

The S2881 comes with a 4Mbit BIOS chip, which does not suffice to put a Linux kernel in ROM. However, it's sufficient to have a fully functional coreboot with FILO payload, as described below.

It turns out that you can also use an 8Mbit BIOS chip on the S2881. For instance, flashrom supports flashing the SST 49LF080A on the S2881 without problems. Having a 8Mbit chip allows putting a Linux kernel into the BIOS, as described in the S2892 the OLPC way build tutorial.

Payload

coreboot requires a Payload to boot an operating system.

If you want to boot from the network, you will need to use Etherboot.

If you want to boot from an IDE drive, SATA drive, USB stick or CDROM, you can use FILO.

Building the payload

In order to boot from a SATA disk, we use FILO.

Once you've downloaded FILO, you will need to put a file 'Config' in its root tree. An example can be found in the distribution, called 'defconfig'.

You can configure FILO to load Grub. Here's my Config, which does that:

 # Use grub instead of autoboot?
 USE_GRUB = 1
 # Grub menu.lst path
 MENULST_FILE = "hda1:/grub/menu.lst"
 # Driver for hard disk, CompactFlash, and CD-ROM on IDE bus
 IDE_DISK = 1
 # Add a short delay when polling status registers
 # (required on some broken SATA controllers)
 IDE_DISK_POLL_DELAY = 1
 # Driver for USB Storage
 USB_DISK = 1
 # VGA text console
 VGA_CONSOLE = 1
 PC_KEYBOARD = 1
 # Enable the serial console
 SERIAL_CONSOLE = 1
 # Serial console; real external serial port
 SERIAL_IOBASE = 0x3f8
 SERIAL_SPEED = 115200
 # Filesystems
 FSYS_EXT2FS = 1
 FSYS_ISO9660 = 1
 # Support for boot disk image in bootable CD-ROM (El Torito)
 ELTORITO = 1
 # PCI support
 SUPPORT_PCI = 1
 # Enable this to scan PCI busses above bus 0
 # AMD64 based boards do need this.
 PCI_BRUTE_SCAN = 1
 # Loader for standard Linux kernel image, a.k.a. /vmlinuz
 LINUX_LOADER = 1

In order to get serial output from Grub, you will also need to add something like this to your menu.list:

 # serial port 0
 serial --unit=0 --speed=115200
 terminal --timeout=15 serial console

Now execute 'make', which will generate a filo.elf file that will be your payload. You will need to refer to this file to build coreboot as explained below, because it gets included in the coreboot ROM image.

Building coreboot

Download coreboot (Download coreboot). You need subversion revision 2251 or higher. Note that revisions 2288 through 2295 are known bad, do not use those.

If you want VGA support, a few changes are required in the coreboot source tree. Edit this file:

 src/mainboard/tyan/s2881/Options.lb

You'll need to enable the following two lines:

 #VGA Console
 default CONFIG_CONSOLE_VGA=1
 default CONFIG_PCI_ROM_RUN=1

Now - if you are going to be using a rom chip larger than 512K, you will need to also make a change in

 src/mainboard/tyan/s2881/Config.lb

Assuming you are using a 1MB chip, modify the onboard vga device info from this

 chip drivers/pci/onboard
   device pci 6.0 on end
   register "rom_address" = "0xfff80000"
 end

to this

 chip drivers/pci/onboard
   device pci 6.0 on end
   register "rom_address" = "0xfff00000"
 end

This tells coreboot where to find the VGA rom. Depending on the size of the rom chip you use, it will be at a different address (which is calculated from the top of the rom chip, and we prepend the vga rom to the coreboot image!).

Whether you want VGA or not, build a tyan/s2881 tree.

 cd targets
 ./buildtarget tyan/s2881

Modify tyan/s2881/Config.lb; change payload setting to point to your filo.elf file

If you don't need VGA, you will need to modify tyan/s2881/Config.lb. Comment out the line:

 option ROM_SIZE = 475136

If you do need VGA, modify the ROM_SIZE line to the following, because our VGA bios is only 36KB, not 48K:

 option ROM_SIZE = 487424

Make you are using GCC 3.4 (not GCC 4.0), or your image will be too large, and then:

 cd tyan/s2881/s2881
 make

VGA bios

Skip this section if you don't need VGA support in your coreboot.

The s2881 VGA bios is 36K long. The last 4KB are not available in RAM after boot (with the proprietary BIOS), however, so we can NOT use this method to extract the VGA BIOS:

 While booted with your proprietary BIOS, you can see where your vga bios starts 
 and how much space it takes by issuing
   cat /proc/iomem | grep "Video ROM"
 Then get a copy of your vga bios.
   dd if=/dev/mem of=vgabios.bin bs=1k count=32 skip=768
 Our vga bios is 32K. Verify that the image is correct - it should start with 55 AA, 
 and contain strings that indicate it's your VGA bios. You should be able to clearly 
 make out 'ATI RAGE' etc.

So this does not work - the last 4K is missing. Thankfully, Anton Borisov has some tools that can extract the VGA BIOS - and other option ROMs, in fact - from the BIOS images that Tyan offers on its website.

You can download the tool for AMI here:

 http://www.kaos.ru/biosgfx/download/AmiDeco_0.31e.src.tar.gz

Then download the latest Bios for the s2881 from the TYAN website:

 http://www.tyan.com/support_download_bios.aspx?model=S.S2881

Once you have the image, you can display its contents like this:

 ./amideco 2881v206.rom -l

That should show output like:

 -=AmiBIOSDeco, version 0.31e (Linux)=-
 FileLength      : 80000 (524288 bytes)
 FileName        : 2881v206.rom
         AMIBIOS information:
 Version         : 0800
 Packed Data     : 56C90 (355472 bytes)
 Start           : DF83C
 Packed Offset   : 5F83C
 Offset          : 80000
 Released        : 14 June 2005
 DirName         : 2881v206.---
 +------------------------------------------------------------------------------+
 | Class.Instance (Name)        Packed --->  Expanded      Compression   Offset |
 +------------------------------------------------------------------------------+
  08 01 (        Interface)    00798 ( 01944) => 00798 ( 01944)      5F83Ch
  04 02 (     Setup Client)    03F40 ( 16192) => 069A2 ( 27042)  +   5B8E8h
  0C 03 (           ROM-ID)    00008 ( 00008) => 00008 ( 00008)      5B8CCh
  0E 04 (         OEM Logo)    00B4D ( 02893) => 4B436 (308278)  +   5AD68h
  1A 05 (       Small Logo)    00532 ( 01330) => 026A2 ( 09890)  +   5A820h
  18 06 (ADM (Display MGR))    01741 ( 05953) => 04019 ( 16409)  +   590C8h
  19 07 (         ADM Font)    0059C ( 01436) => 01304 ( 04868)  +   58B18h
  1B 08 (             SLAB)    25016 (151574) => 4CAA8 (314024)  +   33AECh
  21 09 (    Multilanguage)    03B90 ( 15248) => 0844A ( 33866)  +   2FF48h
  20 10 (    PCI AddOn ROM)    05B84 ( 23428) => 09000 ( 36864)  +   2A3B0h
  20 11 (    PCI AddOn ROM)    06343 ( 25411) => 0C800 ( 51200)  +   24058h
  20 12 (    PCI AddOn ROM)    0D5EA ( 54762) => 0E000 ( 57344)  +   16A58h
  20 13 (    PCI AddOn ROM)    05678 ( 22136) => 09000 ( 36864)  +   113CCh
  11 14 (     P6 Microcode)    2062004 (33955844) => 00039 ( 00057)  +   0EBA4h
  2E 15 (         User ROM)    047B3 ( 18355) => 07800 ( 30720)  +   0A3DCh
  06 16 (         DMI Data)    003CD ( 00973) => 00A1A ( 02586)  +   09FF8h
  2F 17 (  User-Defined ;))    00C1D ( 03101) => 02595 ( 09621)  +   093C4h
  80 18 (  User-Defined ;))    00038 ( 00056) => 00038 ( 00056)      09378h
 Total Sections  : 18

Now extract all these parts:

 ./amideco 2881v206.rom -x

That will create a number of new files:

 -rw-r--r-- 1 ward ward   27042 2006-07-07 16:29 amibody.04
 -rw-r--r-- 1 ward ward    1944 2006-07-07 16:29 amibody.08
 -rw-r--r-- 1 ward ward       8 2006-07-07 16:29 amibody.0c
 -rw-r--r-- 1 ward ward  308278 2006-07-07 16:29 amibody.0e
 -rw-r--r-- 1 ward ward       0 2006-07-07 16:29 amibody.11
 -rw-r--r-- 1 ward ward   16409 2006-07-07 16:29 amibody.18
 -rw-r--r-- 1 ward ward    4868 2006-07-07 16:29 amibody.19
 -rw-r--r-- 1 ward ward    9890 2006-07-07 16:29 amibody.1a
 -rw-r--r-- 1 ward ward  314024 2006-07-07 16:29 amibody.1b
 -rw-r--r-- 1 ward ward   33866 2006-07-07 16:29 amibody.21
 -rw-r--r-- 1 ward ward   36864 2006-07-07 16:29 amipci_00.20
 -rw-r--r-- 1 ward ward   51200 2006-07-07 16:29 amipci_01.20
 -rw-r--r-- 1 ward ward   57344 2006-07-07 16:29 amipci_02.20
 -rw-r--r-- 1 ward ward   36864 2006-07-07 16:29 amipci_03.20

We know that our VGA BIOS is 36K long. Only 2 files fit the bill: amipci_00.20 and amipci_03.20. If you run 'strings' on both files, you'll see that the former is the VGA BIOS, and the latter is the Option ROM for the Broadcom network card.

So, now that we have the proper VGA bios image (36K long), we need to concatenate the VGA bios with the coreboot image

 cat amipci_00.20 coreboot.rom > final_coreboot.rom

Burning the bios

Make sure your Biossavior is set to the 'RD1' position (not to 'ORG'!), so that you can always revert to the original bios.

On the target machine:

  cd coreboot-v2/util/flashrom
  ./flashrom -v -w path/to/your/coreboot.rom

If you want VGA support, make sure you burn the final_coreboot.rom image!

Booting coreboot

You now need to 'halt' the machine. A soft reset won't work the first time you boot from the proprietary BIOS into coreboot.

Since we set up serial output in the coreboot configuration files above, you will want to hook up a serial console (or a copy of minicom or the like) to see what the box is doing while starting up. Keep your eyes on the screen after hitting the power button - coreboot will be up and running way before you expect it!

If you have problems, don't despair. Power down the box, switch the biossavior to 'ORG' and boot in the proprietary BIOS. Just don't forget to switch the biossavior back to the 'RD1' position before flashing the BIOS!

See what went wrong, and subscribe and post to the friendly and helpful mailing list if you can't figure it out by yourself.

Hardware monitoring

The s2881 has 2 HWM chips, each driving a number of fans and temperature sensors. As of SVN revision 2674, the main HWM chip that drives most of the fans (ADT7463) is configured to be in automatic (hardware) fan control mode, based on the temperature sensors connected to it. These are the specific HWM settings:

* fans under automatic hardware control
* fans blow by default at 25% speed
* if any of the sensors goes above 55C (Tmin), the fans start blowing harder to compensate
* if any of the sensors reach 70C (THERM limit), the fans start blowing at full speed

These settings should lead to longer fan life, reduced power consumption, and better protection against accidental fan speed misconfiguration from software. And the machine is a lot less loud under light load.

The original Tyan BIOS had these settings:

 * fans under manual (software) control
 * fans blow by default at 100% speed
 * automatic mode Tmin set to 90C
 * automatic mode THERM limit set to 100C

The coreboot settings should be more ideal for real world deployment, and are a lot safer.

GNU head This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.